Continuous dependence on function parameters
for superlinear dirichlet problems
Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 131-148
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We discuss the existence of solutions for a certain generalization of the membrane equation and their continuous dependence on function parameters. We apply variational methods and consider the PDE as the Euler–Lagrange equation for a certain integral functional, which is not necessarily convex and coercive. As a consequence of the duality theory we obtain variational principles for our problem and some numerical results concerning approximation of solutions.
Keywords:
discuss existence solutions certain generalization membrane equation their continuous dependence function parameters apply variational methods consider pde euler lagrange equation certain integral functional which necessarily convex coercive consequence duality theory obtain variational principles problem numerical results concerning approximation solutions
Affiliations des auteurs :
Aleksandra Orpel 1
@article{10_4064_cm103_1_14,
author = {Aleksandra Orpel},
title = {Continuous dependence on function parameters
for superlinear dirichlet problems},
journal = {Colloquium Mathematicum},
pages = {131--148},
year = {2005},
volume = {103},
number = {1},
doi = {10.4064/cm103-1-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-14/}
}
TY - JOUR AU - Aleksandra Orpel TI - Continuous dependence on function parameters for superlinear dirichlet problems JO - Colloquium Mathematicum PY - 2005 SP - 131 EP - 148 VL - 103 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm103-1-14/ DO - 10.4064/cm103-1-14 LA - en ID - 10_4064_cm103_1_14 ER -
Aleksandra Orpel. Continuous dependence on function parameters for superlinear dirichlet problems. Colloquium Mathematicum, Tome 103 (2005) no. 1, pp. 131-148. doi: 10.4064/cm103-1-14
Cité par Sources :