Counting occurrences in almost sure limit theorems
Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 271-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X,X_1,X_2,\mathinner {\ldotp \ldotp \ldotp }$ be a sequence of
i.i.d. random variables with $X\in L^p$, $0 p\le 2$.
For $n\ge 1$, let $S_n= X_1+\mathinner {\cdotp \cdotp \cdotp }+ X_n$. Developing a preceding work concerning the $L^2$-case only, we compare, under strictly weaker conditions than those of the central limit theorem, the deviation of the series
$\sum _n w_n{\bf 1}_{\{ S_n
s_n\} } $ with respect to $\sum _n w_n{\bf P}\{ S_n s_n\} $,
for suitable weights $(w_n)$ and arbitrary sequences $(s_n)$ of reals. Extensions to the case $0
p 2$, and when the law of $X$ belongs to the domain of attraction of a $p$-stable law, are also obtained. We deduce strong versions of the a.s. central limit theorem.
Keywords:
mathinner ldotp ldotp ldotp sequence random variables mathinner cdotp cdotp cdotp developing preceding work concerning case only compare under strictly weaker conditions those central limit theorem deviation series sum respect sum suitable weights arbitrary sequences reals extensions law belongs domain attraction p stable law obtained deduce strong versions central limit theorem
Affiliations des auteurs :
Rita Giuliano-Antonini 1 ; Michel Weber 2
@article{10_4064_cm102_2_8,
author = {Rita Giuliano-Antonini and Michel Weber},
title = {Counting occurrences in almost sure limit theorems},
journal = {Colloquium Mathematicum},
pages = {271--290},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {2005},
doi = {10.4064/cm102-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/}
}
TY - JOUR AU - Rita Giuliano-Antonini AU - Michel Weber TI - Counting occurrences in almost sure limit theorems JO - Colloquium Mathematicum PY - 2005 SP - 271 EP - 290 VL - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/ DO - 10.4064/cm102-2-8 LA - en ID - 10_4064_cm102_2_8 ER -
Rita Giuliano-Antonini; Michel Weber. Counting occurrences in almost sure limit theorems. Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 271-290. doi: 10.4064/cm102-2-8
Cité par Sources :