Counting occurrences in almost sure limit theorems
Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 271-290.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X,X_1,X_2,\mathinner {\ldotp \ldotp \ldotp }$ be a sequence of i.i.d. random variables with $X\in L^p$, $0 p\le 2$. For $n\ge 1$, let $S_n= X_1+\mathinner {\cdotp \cdotp \cdotp }+ X_n$. Developing a preceding work concerning the $L^2$-case only, we compare, under strictly weaker conditions than those of the central limit theorem, the deviation of the series $\sum _n w_n{\bf 1}_{\{ S_n s_n\} } $ with respect to $\sum _n w_n{\bf P}\{ S_n s_n\} $, for suitable weights $(w_n)$ and arbitrary sequences $(s_n)$ of reals. Extensions to the case $0 p 2$, and when the law of $X$ belongs to the domain of attraction of a $p$-stable law, are also obtained. We deduce strong versions of the a.s. central limit theorem.
DOI : 10.4064/cm102-2-8
Keywords: mathinner ldotp ldotp ldotp sequence random variables mathinner cdotp cdotp cdotp developing preceding work concerning case only compare under strictly weaker conditions those central limit theorem deviation series sum respect sum suitable weights arbitrary sequences reals extensions law belongs domain attraction p stable law obtained deduce strong versions central limit theorem

Rita Giuliano-Antonini 1 ; Michel Weber 2

1 Dipartimento di Matematica Università di Pisa Via F. Buonarroti, 2 56127 Pisa, Italy
2 Mathématique (IRMA) Université Louis-Pasteur 7, rue René Descartes 67084 Strasbourg Cedex, France
@article{10_4064_cm102_2_8,
     author = {Rita Giuliano-Antonini and Michel Weber},
     title = {Counting occurrences in almost sure limit theorems},
     journal = {Colloquium Mathematicum},
     pages = {271--290},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2005},
     doi = {10.4064/cm102-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/}
}
TY  - JOUR
AU  - Rita Giuliano-Antonini
AU  - Michel Weber
TI  - Counting occurrences in almost sure limit theorems
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 271
EP  - 290
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/
DO  - 10.4064/cm102-2-8
LA  - en
ID  - 10_4064_cm102_2_8
ER  - 
%0 Journal Article
%A Rita Giuliano-Antonini
%A Michel Weber
%T Counting occurrences in almost sure limit theorems
%J Colloquium Mathematicum
%D 2005
%P 271-290
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/
%R 10.4064/cm102-2-8
%G en
%F 10_4064_cm102_2_8
Rita Giuliano-Antonini; Michel Weber. Counting occurrences in almost sure limit theorems. Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 271-290. doi : 10.4064/cm102-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-8/

Cité par Sources :