Pointwise convergence of nonconventional averages
Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 245-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We answer a question of H. Furstenberg on the pointwise convergence of the averages
$$\frac{1}{N}\sum_{n=1}^N U^{n}(f \cdot R^{n}(g)),$$ where $U$ and $R$ are positive operators.
We also study the pointwise convergence of the averages
$$\frac{1}{N}\sum_{n=1}^N f(S^nx)g(R^nx)$$ when $T$ and $S$ are measure preserving transformations.
Keywords:
answer question furstenberg pointwise convergence averages frac sum cdot where positive operators study pointwise convergence averages frac sum measure preserving transformations
Affiliations des auteurs :
I. Assani 1
@article{10_4064_cm102_2_6,
author = {I. Assani},
title = {Pointwise convergence of nonconventional averages},
journal = {Colloquium Mathematicum},
pages = {245--262},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {2005},
doi = {10.4064/cm102-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-6/}
}
I. Assani. Pointwise convergence of nonconventional averages. Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 245-262. doi: 10.4064/cm102-2-6
Cité par Sources :