Pointwise convergence of nonconventional averages
Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 245-262.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We answer a question of H. Furstenberg on the pointwise convergence of the averages $$\frac{1}{N}\sum_{n=1}^N U^{n}(f \cdot R^{n}(g)),$$ where $U$ and $R$ are positive operators. We also study the pointwise convergence of the averages $$\frac{1}{N}\sum_{n=1}^N f(S^nx)g(R^nx)$$ when $T$ and $S$ are measure preserving transformations.
DOI : 10.4064/cm102-2-6
Keywords: answer question furstenberg pointwise convergence averages frac sum cdot where positive operators study pointwise convergence averages frac sum measure preserving transformations

I. Assani 1

1 Department of Mathematics, UNC Chapel Hill, NC 27599, U.S.A.
@article{10_4064_cm102_2_6,
     author = {I. Assani},
     title = {Pointwise convergence of nonconventional averages},
     journal = {Colloquium Mathematicum},
     pages = {245--262},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2005},
     doi = {10.4064/cm102-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-6/}
}
TY  - JOUR
AU  - I. Assani
TI  - Pointwise convergence of nonconventional averages
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 245
EP  - 262
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-6/
DO  - 10.4064/cm102-2-6
LA  - en
ID  - 10_4064_cm102_2_6
ER  - 
%0 Journal Article
%A I. Assani
%T Pointwise convergence of nonconventional averages
%J Colloquium Mathematicum
%D 2005
%P 245-262
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-6/
%R 10.4064/cm102-2-6
%G en
%F 10_4064_cm102_2_6
I. Assani. Pointwise convergence of nonconventional averages. Colloquium Mathematicum, Tome 102 (2005) no. 2, pp. 245-262. doi : 10.4064/cm102-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm102-2-6/

Cité par Sources :