On universality of finite powers of locally path-connected meager spaces
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 87-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that for every integer $n$ the $(2n+1)$th power of any locally path-connected metrizable space of the first Baire category is ${\mathcal A}_1[n]$-universal, i.e., contains a closed topological copy of each at most $n$-dimensional metrizable $\sigma $-compact space. Also a one-dimensional $\sigma $-compact absolute retract $X$ is found such that the power $X^{n+1}$ is ${\mathcal A}_1[n]$-universal for every $n$.
DOI : 10.4064/cm102-1-8
Keywords: shown every integer power locally path connected metrizable space first baire category mathcal universal contains closed topological copy each n dimensional metrizable sigma compact space one dimensional sigma compact absolute retract found power mathcal universal every

Taras Banakh 1 ; Robert Cauty 2

1 Department of Mathematics Lviv National University Universytetska 1 Lviv 79000, Ukraine and Instytut Matematyki Akademia /Swi/etokrzyska Kielce, Poland
2 Université Paris VI UFR 920, Boîte courrier 172 4, Place, Jussieu 75252 Paris Cedex 05, France
@article{10_4064_cm102_1_8,
     author = {Taras Banakh and Robert Cauty},
     title = {On universality of finite powers of
 locally path-connected meager spaces},
     journal = {Colloquium Mathematicum},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2005},
     doi = {10.4064/cm102-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Robert Cauty
TI  - On universality of finite powers of
 locally path-connected meager spaces
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 87
EP  - 95
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/
DO  - 10.4064/cm102-1-8
LA  - en
ID  - 10_4064_cm102_1_8
ER  - 
%0 Journal Article
%A Taras Banakh
%A Robert Cauty
%T On universality of finite powers of
 locally path-connected meager spaces
%J Colloquium Mathematicum
%D 2005
%P 87-95
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/
%R 10.4064/cm102-1-8
%G en
%F 10_4064_cm102_1_8
Taras Banakh; Robert Cauty. On universality of finite powers of
 locally path-connected meager spaces. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 87-95. doi : 10.4064/cm102-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/

Cité par Sources :