On universality of finite powers of
locally path-connected meager spaces
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 87-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that for every integer $n$ the $(2n+1)$th power of any locally path-connected metrizable space of the first Baire category is ${\mathcal A}_1[n]$-universal, i.e., contains a closed topological copy of each at most $n$-dimensional metrizable $\sigma $-compact space. Also a one-dimensional $\sigma $-compact absolute retract $X$ is found such that the power $X^{n+1}$ is ${\mathcal A}_1[n]$-universal for every $n$.
Keywords:
shown every integer power locally path connected metrizable space first baire category mathcal universal contains closed topological copy each n dimensional metrizable sigma compact space one dimensional sigma compact absolute retract found power mathcal universal every
Affiliations des auteurs :
Taras Banakh 1 ; Robert Cauty 2
@article{10_4064_cm102_1_8,
author = {Taras Banakh and Robert Cauty},
title = {On universality of finite powers of
locally path-connected meager spaces},
journal = {Colloquium Mathematicum},
pages = {87--95},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2005},
doi = {10.4064/cm102-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/}
}
TY - JOUR AU - Taras Banakh AU - Robert Cauty TI - On universality of finite powers of locally path-connected meager spaces JO - Colloquium Mathematicum PY - 2005 SP - 87 EP - 95 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-8/ DO - 10.4064/cm102-1-8 LA - en ID - 10_4064_cm102_1_8 ER -
Taras Banakh; Robert Cauty. On universality of finite powers of locally path-connected meager spaces. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 87-95. doi: 10.4064/cm102-1-8
Cité par Sources :