A disjointness type property
of conditional expectation operators
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 9-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a characterization of conditional expectation
operators through a disjointness type property similar to
band-preserving
operators. We say that the operator $T:X\to X$ on a Banach
lattice $X$ is semi-band-preserving if and only if for all $f, g
\in X$, $f \perp Tg$ implies that $Tf \perp Tg$. We prove that when
$X$ is a purely atomic Banach lattice, then an operator $T$ on $X$
is a weighted conditional expectation operator
if and only if $T$ is semi-band-preserving.
Keywords:
characterization conditional expectation operators through disjointness type property similar band preserving operators say operator banach lattice semi band preserving only perp implies perp prove purely atomic banach lattice operator weighted conditional expectation operator only semi band preserving
Affiliations des auteurs :
Beata Randrianantoanina 1
@article{10_4064_cm102_1_2,
author = {Beata Randrianantoanina},
title = {A disjointness type property
of conditional expectation operators},
journal = {Colloquium Mathematicum},
pages = {9--20},
publisher = {mathdoc},
volume = {102},
number = {1},
year = {2005},
doi = {10.4064/cm102-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-2/}
}
TY - JOUR AU - Beata Randrianantoanina TI - A disjointness type property of conditional expectation operators JO - Colloquium Mathematicum PY - 2005 SP - 9 EP - 20 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-2/ DO - 10.4064/cm102-1-2 LA - en ID - 10_4064_cm102_1_2 ER -
Beata Randrianantoanina. A disjointness type property of conditional expectation operators. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 9-20. doi: 10.4064/cm102-1-2
Cité par Sources :