Separated sequences in uniformly convex Banach spaces
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 147-153.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a characterization of uniformly convex Banach spaces in terms of a uniform version of the Kadec–Klee property. As an application we prove that if $(x_n)$ is a bounded sequence in a uniformly convex Banach space $X$ which is $\varepsilon $-separated for some $0\varepsilon \le 2$, then for all norm one vectors $x\in X$ there exists a subsequence $(x_{n_j})$ of $(x_n)$ such that $$ \mathop {\rm inf}_{j\not =k}\| x-(x_{n_j} - x_{n_k}) \| \ge 1+\delta _X(\textstyle {{2\over 3}}\varepsilon ), $$ where $\delta _X$ is the modulus of convexity of $X$. From this we deduce that the unit sphere of every infinite-dimensional uniformly convex Banach space contains a $(1+\textstyle {{1\over 2}}\delta _X(\textstyle {{2\over 3}}))$-separated sequence.
DOI : 10.4064/cm102-1-13
Keywords: characterization uniformly convex banach spaces terms uniform version kadec klee property application prove bounded sequence uniformly convex banach space which varepsilon separated varepsilon norm vectors there exists subsequence mathop inf x delta textstyle varepsilon where delta modulus convexity deduce unit sphere every infinite dimensional uniformly convex banach space contains textstyle delta textstyle separated sequence

J. M. A. M. van Neerven 1

1 Delft Institute of Applied Mathematics Technical University of Delft P.O. Box 5031 2600 GA Delft, The Netherlands
@article{10_4064_cm102_1_13,
     author = {J. M. A. M. van Neerven},
     title = {Separated sequences in
 uniformly convex {Banach} spaces},
     journal = {Colloquium Mathematicum},
     pages = {147--153},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2005},
     doi = {10.4064/cm102-1-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-13/}
}
TY  - JOUR
AU  - J. M. A. M. van Neerven
TI  - Separated sequences in
 uniformly convex Banach spaces
JO  - Colloquium Mathematicum
PY  - 2005
SP  - 147
EP  - 153
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-13/
DO  - 10.4064/cm102-1-13
LA  - en
ID  - 10_4064_cm102_1_13
ER  - 
%0 Journal Article
%A J. M. A. M. van Neerven
%T Separated sequences in
 uniformly convex Banach spaces
%J Colloquium Mathematicum
%D 2005
%P 147-153
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-13/
%R 10.4064/cm102-1-13
%G en
%F 10_4064_cm102_1_13
J. M. A. M. van Neerven. Separated sequences in
 uniformly convex Banach spaces. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 147-153. doi : 10.4064/cm102-1-13. http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-13/

Cité par Sources :