Separated sequences in
uniformly convex Banach spaces
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 147-153
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a characterization of uniformly convex Banach spaces in terms of a uniform version of the Kadec–Klee property. As an application we prove that if $(x_n)$ is a bounded sequence in a uniformly convex Banach space $X$ which is $\varepsilon $-separated for some $0\varepsilon \le 2$, then for all norm one vectors $x\in X$ there exists a subsequence $(x_{n_j})$ of $(x_n)$ such that $$ \mathop {\rm inf}_{j\not =k}\| x-(x_{n_j} - x_{n_k}) \| \ge 1+\delta _X(\textstyle {{2\over 3}}\varepsilon ), $$ where $\delta _X$ is the modulus of convexity of $X$. From this we deduce that the unit sphere of every infinite-dimensional uniformly convex Banach space contains a $(1+\textstyle {{1\over 2}}\delta _X(\textstyle {{2\over 3}}))$-separated sequence.
Keywords:
characterization uniformly convex banach spaces terms uniform version kadec klee property application prove bounded sequence uniformly convex banach space which varepsilon separated varepsilon norm vectors there exists subsequence mathop inf x delta textstyle varepsilon where delta modulus convexity deduce unit sphere every infinite dimensional uniformly convex banach space contains textstyle delta textstyle separated sequence
Affiliations des auteurs :
J. M. A. M. van Neerven  1
@article{10_4064_cm102_1_13,
author = {J. M. A. M. van Neerven},
title = {Separated sequences in
uniformly convex {Banach} spaces},
journal = {Colloquium Mathematicum},
pages = {147--153},
year = {2005},
volume = {102},
number = {1},
doi = {10.4064/cm102-1-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-13/}
}
J. M. A. M. van Neerven. Separated sequences in uniformly convex Banach spaces. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 147-153. doi: 10.4064/cm102-1-13
Cité par Sources :