Strong no-loop conjecture for algebras
with two simples and radical cube zero
Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ${\mit\Lambda}$ be an artinian ring and let ${\mathfrak r}$ denote
its Jacobson radical. We show that a simple module of finite
projective dimension has no self-extensions when
${\mit\Lambda}$ is graded by its radical, with at most two
simple modules and ${\mathfrak r} ^4 = 0$, in particular, when ${\mit\Lambda}$
is a finite-dimensional algebra over an algebraically closed field
with at most two simple modules and ${\mathfrak r} ^3=0$.
Keywords:
mit lambda artinian ring mathfrak denote its jacobson radical simple module finite projective dimension has self extensions mit lambda graded its radical simple modules mathfrak particular mit lambda finite dimensional algebra algebraically closed field simple modules mathfrak
Affiliations des auteurs :
Bernt T. Jensen  1
@article{10_4064_cm102_1_1,
author = {Bernt T. Jensen},
title = {Strong no-loop conjecture for algebras
with two simples and radical cube zero},
journal = {Colloquium Mathematicum},
pages = {1--7},
year = {2005},
volume = {102},
number = {1},
doi = {10.4064/cm102-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-1/}
}
TY - JOUR AU - Bernt T. Jensen TI - Strong no-loop conjecture for algebras with two simples and radical cube zero JO - Colloquium Mathematicum PY - 2005 SP - 1 EP - 7 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm102-1-1/ DO - 10.4064/cm102-1-1 LA - en ID - 10_4064_cm102_1_1 ER -
Bernt T. Jensen. Strong no-loop conjecture for algebras with two simples and radical cube zero. Colloquium Mathematicum, Tome 102 (2005) no. 1, pp. 1-7. doi: 10.4064/cm102-1-1
Cité par Sources :