On multiple solutions of the Neumann problem
involving the critical Sobolev exponent
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 203-220
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.
Keywords:
consider neumann problem involving critical sobolev exponent nonhomogeneous boundary condition establish existence solutions method sub supersolutions local minimization mountain pass principle
Affiliations des auteurs :
Jan Chabrowski 1
@article{10_4064_cm101_2_5,
author = {Jan Chabrowski},
title = {On multiple solutions of the {Neumann} problem
involving the critical {Sobolev} exponent},
journal = {Colloquium Mathematicum},
pages = {203--220},
publisher = {mathdoc},
volume = {101},
number = {2},
year = {2004},
doi = {10.4064/cm101-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/}
}
TY - JOUR AU - Jan Chabrowski TI - On multiple solutions of the Neumann problem involving the critical Sobolev exponent JO - Colloquium Mathematicum PY - 2004 SP - 203 EP - 220 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/ DO - 10.4064/cm101-2-5 LA - en ID - 10_4064_cm101_2_5 ER -
Jan Chabrowski. On multiple solutions of the Neumann problem involving the critical Sobolev exponent. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 203-220. doi: 10.4064/cm101-2-5
Cité par Sources :