On multiple solutions of the Neumann problem involving the critical Sobolev exponent
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 203-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.
DOI : 10.4064/cm101-2-5
Keywords: consider neumann problem involving critical sobolev exponent nonhomogeneous boundary condition establish existence solutions method sub supersolutions local minimization mountain pass principle

Jan Chabrowski 1

1 Department of Mathematics University of Queensland St. Lucia 4072, Qld, Australia
@article{10_4064_cm101_2_5,
     author = {Jan Chabrowski},
     title = {On multiple solutions of the {Neumann} problem
 involving the critical {Sobolev} exponent},
     journal = {Colloquium Mathematicum},
     pages = {203--220},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2004},
     doi = {10.4064/cm101-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/}
}
TY  - JOUR
AU  - Jan Chabrowski
TI  - On multiple solutions of the Neumann problem
 involving the critical Sobolev exponent
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 203
EP  - 220
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/
DO  - 10.4064/cm101-2-5
LA  - en
ID  - 10_4064_cm101_2_5
ER  - 
%0 Journal Article
%A Jan Chabrowski
%T On multiple solutions of the Neumann problem
 involving the critical Sobolev exponent
%J Colloquium Mathematicum
%D 2004
%P 203-220
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/
%R 10.4064/cm101-2-5
%G en
%F 10_4064_cm101_2_5
Jan Chabrowski. On multiple solutions of the Neumann problem
 involving the critical Sobolev exponent. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 203-220. doi : 10.4064/cm101-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-5/

Cité par Sources :