Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
V. Koubek 1 ; J. Sichler 2
@article{10_4064_cm101_2_3, author = {V. Koubek and J. Sichler}, title = {Almost $ff$-universal and $q$-universal varieties of modular $0$-lattices}, journal = {Colloquium Mathematicum}, pages = {161--182}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2004}, doi = {10.4064/cm101-2-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/} }
TY - JOUR AU - V. Koubek AU - J. Sichler TI - Almost $ff$-universal and $q$-universal varieties of modular $0$-lattices JO - Colloquium Mathematicum PY - 2004 SP - 161 EP - 182 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/ DO - 10.4064/cm101-2-3 LA - en ID - 10_4064_cm101_2_3 ER -
V. Koubek; J. Sichler. Almost $ff$-universal and $q$-universal varieties of modular $0$-lattices. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 161-182. doi : 10.4064/cm101-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/
Cité par Sources :