Almost $ff$-universal and $q$-universal varieties of modular $0$-lattices
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 161-182.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

\def\Bbb#1{{\mathbb#1}}A variety $\Bbb V$ of algebras of a finite type is almost $f\!f$-universal if there is a finiteness-preserving faithful functor $F:\Bbb G\rightarrow \Bbb V$ from the category $\Bbb G$ of all graphs and their compatible maps such that $F\gamma$ is nonconstant for every $\gamma$ and every nonconstant homomorphism $h:FG\rightarrow FG'$ has the form $h=F\gamma$ for some $\gamma :G\rightarrow G'$. A variety $\Bbb V$ is $Q$-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice. For a variety $\Bbb V$ of modular $0$-lattices it is shown that $\Bbb V$ is almost $f\!f$-universal if and only if $\Bbb V$ is $Q$-universal, and that this is also equivalent to the non-distributivity of $\Bbb V$.
DOI : 10.4064/cm101-2-3
Keywords: def bbb mathbb variety bbb algebras finite type almost f universal there finiteness preserving faithful functor bbb rightarrow bbb category bbb graphs their compatible maps gamma nonconstant every gamma every nonconstant homomorphism rightarrow has form gamma gamma rightarrow variety bbb q universal its lattice subquasivarieties has lattice subquasivarieties quasivariety algebras finite type quotient its sublattice variety bbb modular lattices shown bbb almost f universal only bbb q universal equivalent non distributivity bbb

V. Koubek 1 ; J. Sichler 2

1 Department of Theoretical Computer Science and Institute of Theoretical Computer Science Faculty of Mathematics and Physics Charles University Malostranské nám. 25 118 00 Praha 1, Czech Republic
2 Department of Mathematics University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
@article{10_4064_cm101_2_3,
     author = {V. Koubek and J. Sichler},
     title = {Almost $ff$-universal and $q$-universal varieties
 of modular $0$-lattices},
     journal = {Colloquium Mathematicum},
     pages = {161--182},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2004},
     doi = {10.4064/cm101-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/}
}
TY  - JOUR
AU  - V. Koubek
AU  - J. Sichler
TI  - Almost $ff$-universal and $q$-universal varieties
 of modular $0$-lattices
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 161
EP  - 182
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/
DO  - 10.4064/cm101-2-3
LA  - en
ID  - 10_4064_cm101_2_3
ER  - 
%0 Journal Article
%A V. Koubek
%A J. Sichler
%T Almost $ff$-universal and $q$-universal varieties
 of modular $0$-lattices
%J Colloquium Mathematicum
%D 2004
%P 161-182
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/
%R 10.4064/cm101-2-3
%G en
%F 10_4064_cm101_2_3
V. Koubek; J. Sichler. Almost $ff$-universal and $q$-universal varieties
 of modular $0$-lattices. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 161-182. doi : 10.4064/cm101-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-3/

Cité par Sources :