A generalization of a theorem of Schinzel
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 155-159
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give lower bounds for the Mahler measure of totally positive algebraic integers. These bounds depend on the degree and the discriminant. Our results improve earlier ones due to A. Schinzel. The proof uses an explicit auxiliary function in two variables.
Keywords:
lower bounds mahler measure totally positive algebraic integers these bounds depend degree discriminant results improve earlier due schinzel proof uses explicit auxiliary function variables
Affiliations des auteurs :
Georges Rhin 1
@article{10_4064_cm101_2_2,
author = {Georges Rhin},
title = {A generalization of a theorem of {Schinzel}},
journal = {Colloquium Mathematicum},
pages = {155--159},
year = {2004},
volume = {101},
number = {2},
doi = {10.4064/cm101-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-2/}
}
Georges Rhin. A generalization of a theorem of Schinzel. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 155-159. doi: 10.4064/cm101-2-2
Cité par Sources :