A generalization of a theorem of Schinzel
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 155-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give lower bounds for the Mahler measure of totally positive algebraic integers. These bounds depend on the degree and the discriminant. Our results improve earlier ones due to A. Schinzel. The proof uses an explicit auxiliary function in two variables.
DOI : 10.4064/cm101-2-2
Keywords: lower bounds mahler measure totally positive algebraic integers these bounds depend degree discriminant results improve earlier due schinzel proof uses explicit auxiliary function variables

Georges Rhin 1

1 UMR CNRS 7122, Département de Mathématiques, UFR MIM Université de Metz Île du Saulcy 57045 Metz Cedex 01, France
@article{10_4064_cm101_2_2,
     author = {Georges Rhin},
     title = {A generalization of a theorem of {Schinzel}},
     journal = {Colloquium Mathematicum},
     pages = {155--159},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2004},
     doi = {10.4064/cm101-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-2/}
}
TY  - JOUR
AU  - Georges Rhin
TI  - A generalization of a theorem of Schinzel
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 155
EP  - 159
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-2/
DO  - 10.4064/cm101-2-2
LA  - en
ID  - 10_4064_cm101_2_2
ER  - 
%0 Journal Article
%A Georges Rhin
%T A generalization of a theorem of Schinzel
%J Colloquium Mathematicum
%D 2004
%P 155-159
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-2/
%R 10.4064/cm101-2-2
%G en
%F 10_4064_cm101_2_2
Georges Rhin. A generalization of a theorem of Schinzel. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 155-159. doi : 10.4064/cm101-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-2/

Cité par Sources :