On pairs of Banach spaces which are isomorphic to complemented subspaces of each other
Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 279-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish the existence of Banach spaces $E$ and $F$ isomorphic to complemented subspaces of each other but with $E^m \oplus F^n$ isomorphic to $E^p \oplus F^q$, $m, n, p, q \in {\mathbb N}$, if and only if $m=p$ and $n=q$.
DOI : 10.4064/cm101-2-10
Keywords: establish existence banach spaces isomorphic complemented subspaces each other oplus isomorphic oplus mathbb only

Elói Medina Galego 1

1 Department of Mathematics IME, University of São Paulo São Paulo, 05508-090, Brazil
@article{10_4064_cm101_2_10,
     author = {El\'oi Medina Galego},
     title = {On pairs of {Banach} spaces which are isomorphic to
 complemented subspaces of each other},
     journal = {Colloquium Mathematicum},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2004},
     doi = {10.4064/cm101-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-10/}
}
TY  - JOUR
AU  - Elói Medina Galego
TI  - On pairs of Banach spaces which are isomorphic to
 complemented subspaces of each other
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 279
EP  - 287
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-10/
DO  - 10.4064/cm101-2-10
LA  - en
ID  - 10_4064_cm101_2_10
ER  - 
%0 Journal Article
%A Elói Medina Galego
%T On pairs of Banach spaces which are isomorphic to
 complemented subspaces of each other
%J Colloquium Mathematicum
%D 2004
%P 279-287
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-10/
%R 10.4064/cm101-2-10
%G en
%F 10_4064_cm101_2_10
Elói Medina Galego. On pairs of Banach spaces which are isomorphic to
 complemented subspaces of each other. Colloquium Mathematicum, Tome 101 (2004) no. 2, pp. 279-287. doi : 10.4064/cm101-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm101-2-10/

Cité par Sources :