Strong continuity of invariant probability charges
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 135-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider a semigroup action on a set. We derive conditions, in terms of the induced action of the semigroup on $\{ 0,1\}$-valued probability charges, which ensure that all invariant probability charges are strongly continuous.
DOI : 10.4064/cm101-1-9
Keywords: consider semigroup action set derive conditions terms induced action semigroup valued probability charges which ensure invariant probability charges strongly continuous

Harald Luschgy 1 ; Sławomir Solecki 2

1 FB IV-Mathematik Universität Trier D-54286 Trier, BR Deutschland
2 Department of Mathematics University of Illinois 1409 W. Green St. Urbana, IL 61801, U.S.A.
@article{10_4064_cm101_1_9,
     author = {Harald Luschgy and S{\l}awomir Solecki},
     title = {Strong continuity of invariant probability charges},
     journal = {Colloquium Mathematicum},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2004},
     doi = {10.4064/cm101-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-9/}
}
TY  - JOUR
AU  - Harald Luschgy
AU  - Sławomir Solecki
TI  - Strong continuity of invariant probability charges
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 135
EP  - 142
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-9/
DO  - 10.4064/cm101-1-9
LA  - en
ID  - 10_4064_cm101_1_9
ER  - 
%0 Journal Article
%A Harald Luschgy
%A Sławomir Solecki
%T Strong continuity of invariant probability charges
%J Colloquium Mathematicum
%D 2004
%P 135-142
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-9/
%R 10.4064/cm101-1-9
%G en
%F 10_4064_cm101_1_9
Harald Luschgy; Sławomir Solecki. Strong continuity of invariant probability charges. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 135-142. doi : 10.4064/cm101-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-9/

Cité par Sources :