Orlicz spaces, $\alpha $-decreasing functions,
and the $\Delta _2$ condition
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 113-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove some quantitatively sharp estimates concerning the $\Delta _2$ and $\nabla _2$ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.
Keywords:
prove quantitatively sharp estimates concerning delta nabla conditions functions which generalize known sharp forms arise connection between orlicz space theory theory elliptic partial differential equations
Affiliations des auteurs :
Gary M. Lieberman 1
@article{10_4064_cm101_1_7,
author = {Gary M. Lieberman},
title = {Orlicz spaces, $\alpha $-decreasing functions,
and the $\Delta _2$ condition},
journal = {Colloquium Mathematicum},
pages = {113--120},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2004},
doi = {10.4064/cm101-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/}
}
TY - JOUR AU - Gary M. Lieberman TI - Orlicz spaces, $\alpha $-decreasing functions, and the $\Delta _2$ condition JO - Colloquium Mathematicum PY - 2004 SP - 113 EP - 120 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/ DO - 10.4064/cm101-1-7 LA - en ID - 10_4064_cm101_1_7 ER -
Gary M. Lieberman. Orlicz spaces, $\alpha $-decreasing functions, and the $\Delta _2$ condition. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 113-120. doi: 10.4064/cm101-1-7
Cité par Sources :