Orlicz spaces, $\alpha $-decreasing functions, and the $\Delta _2$ condition
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 113-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove some quantitatively sharp estimates concerning the $\Delta _2$ and $\nabla _2$ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.
DOI : 10.4064/cm101-1-7
Keywords: prove quantitatively sharp estimates concerning delta nabla conditions functions which generalize known sharp forms arise connection between orlicz space theory theory elliptic partial differential equations

Gary M. Lieberman 1

1 Department of Mathematics Iowa State University Ames, IA 50011, U.S.A.
@article{10_4064_cm101_1_7,
     author = {Gary M. Lieberman},
     title = {Orlicz spaces, $\alpha $-decreasing functions,
 and the $\Delta _2$ condition},
     journal = {Colloquium Mathematicum},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2004},
     doi = {10.4064/cm101-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/}
}
TY  - JOUR
AU  - Gary M. Lieberman
TI  - Orlicz spaces, $\alpha $-decreasing functions,
 and the $\Delta _2$ condition
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 113
EP  - 120
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/
DO  - 10.4064/cm101-1-7
LA  - en
ID  - 10_4064_cm101_1_7
ER  - 
%0 Journal Article
%A Gary M. Lieberman
%T Orlicz spaces, $\alpha $-decreasing functions,
 and the $\Delta _2$ condition
%J Colloquium Mathematicum
%D 2004
%P 113-120
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/
%R 10.4064/cm101-1-7
%G en
%F 10_4064_cm101_1_7
Gary M. Lieberman. Orlicz spaces, $\alpha $-decreasing functions,
 and the $\Delta _2$ condition. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 113-120. doi : 10.4064/cm101-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-7/

Cité par Sources :