$L^p$ bounds for spectral multipliers on rank one
NA-groups with roots not all positive
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 51-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a family of non-unimodular rank one $NA$-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable $L^p$ functional calculus for every $p\ge 1$.
Keywords:
consider family non unimodular rank na groups roots positive these groups there exists distinguished invariant sub laplacian which admits differentiable functional calculus every
Affiliations des auteurs :
Emilie David-Guillou 1
@article{10_4064_cm101_1_4,
author = {Emilie David-Guillou},
title = {$L^p$ bounds for spectral multipliers on rank one
{NA-groups} with roots not all positive},
journal = {Colloquium Mathematicum},
pages = {51--74},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2004},
doi = {10.4064/cm101-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/}
}
TY - JOUR AU - Emilie David-Guillou TI - $L^p$ bounds for spectral multipliers on rank one NA-groups with roots not all positive JO - Colloquium Mathematicum PY - 2004 SP - 51 EP - 74 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/ DO - 10.4064/cm101-1-4 LA - en ID - 10_4064_cm101_1_4 ER -
%0 Journal Article %A Emilie David-Guillou %T $L^p$ bounds for spectral multipliers on rank one NA-groups with roots not all positive %J Colloquium Mathematicum %D 2004 %P 51-74 %V 101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/ %R 10.4064/cm101-1-4 %G en %F 10_4064_cm101_1_4
Emilie David-Guillou. $L^p$ bounds for spectral multipliers on rank one NA-groups with roots not all positive. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 51-74. doi: 10.4064/cm101-1-4
Cité par Sources :