$L^p$ bounds for spectral multipliers on rank one NA-groups with roots not all positive
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 51-74.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a family of non-unimodular rank one $NA$-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable $L^p$ functional calculus for every $p\ge 1$.
DOI : 10.4064/cm101-1-4
Keywords: consider family non unimodular rank na groups roots positive these groups there exists distinguished invariant sub laplacian which admits differentiable functional calculus every

Emilie David-Guillou 1

1 Institut de Mathématiques Université Pierre et Marie Curie – Paris VI 4, place Jussieu 75252 Paris Cedex 05, France
@article{10_4064_cm101_1_4,
     author = {Emilie David-Guillou},
     title = {$L^p$ bounds for spectral multipliers on rank one
 {NA-groups} with roots not all positive},
     journal = {Colloquium Mathematicum},
     pages = {51--74},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2004},
     doi = {10.4064/cm101-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/}
}
TY  - JOUR
AU  - Emilie David-Guillou
TI  - $L^p$ bounds for spectral multipliers on rank one
 NA-groups with roots not all positive
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 51
EP  - 74
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/
DO  - 10.4064/cm101-1-4
LA  - en
ID  - 10_4064_cm101_1_4
ER  - 
%0 Journal Article
%A Emilie David-Guillou
%T $L^p$ bounds for spectral multipliers on rank one
 NA-groups with roots not all positive
%J Colloquium Mathematicum
%D 2004
%P 51-74
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/
%R 10.4064/cm101-1-4
%G en
%F 10_4064_cm101_1_4
Emilie David-Guillou. $L^p$ bounds for spectral multipliers on rank one
 NA-groups with roots not all positive. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 51-74. doi : 10.4064/cm101-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-4/

Cité par Sources :