A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 1-7
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a new $3G$-Theorem for the Laplace Green function $G$ on an arbitrary Jordan domain $D$ in ${\mathbb R}^2$. This theorem extends the recent one proved on a Dini-smooth Jordan domain.
Keywords:
prove g theorem laplace green function arbitrary jordan domain mathbb theorem extends recent proved dini smooth jordan domain
Affiliations des auteurs :
Lotfi Riahi 1
@article{10_4064_cm101_1_1,
author = {Lotfi Riahi},
title = {A $3G${-Theorem} for {Jordan} {Domains} in ${\Bbb R}^2$},
journal = {Colloquium Mathematicum},
pages = {1--7},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2004},
doi = {10.4064/cm101-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-1/}
}
Lotfi Riahi. A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 1-7. doi: 10.4064/cm101-1-1
Cité par Sources :