A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$
Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a new $3G$-Theorem for the Laplace Green function $G$ on an arbitrary Jordan domain $D$ in ${\mathbb R}^2$. This theorem extends the recent one proved on a Dini-smooth Jordan domain.
DOI : 10.4064/cm101-1-1
Keywords: prove g theorem laplace green function arbitrary jordan domain mathbb theorem extends recent proved dini smooth jordan domain

Lotfi Riahi 1

1 Department of Mathematics Faculty of Sciences of Tunis Campus Universitaire 1060 Tunis, Tunisia
@article{10_4064_cm101_1_1,
     author = {Lotfi Riahi},
     title = {A $3G${-Theorem} for {Jordan} {Domains} in ${\Bbb R}^2$},
     journal = {Colloquium Mathematicum},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2004},
     doi = {10.4064/cm101-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-1/}
}
TY  - JOUR
AU  - Lotfi Riahi
TI  - A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 1
EP  - 7
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-1/
DO  - 10.4064/cm101-1-1
LA  - en
ID  - 10_4064_cm101_1_1
ER  - 
%0 Journal Article
%A Lotfi Riahi
%T A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$
%J Colloquium Mathematicum
%D 2004
%P 1-7
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-1/
%R 10.4064/cm101-1-1
%G en
%F 10_4064_cm101_1_1
Lotfi Riahi. A $3G$-Theorem for Jordan Domains in ${\Bbb R}^2$. Colloquium Mathematicum, Tome 101 (2004) no. 1, pp. 1-7. doi : 10.4064/cm101-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm101-1-1/

Cité par Sources :