Twisted group rings of strongly unbounded
representation type
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 265-287
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $S$ be a commutative
local ring of characteristic $p$, which is not
a~field, $S^{*}$ the multiplicative group of $S$,
$W$ a subgroup of $S^{*}$, $G$ a finite
$p$-group, and $S^{\lambda}G$ a twisted group
ring of the group $G$ and of the ring $S$ with
a~$2$-cocycle $\lambda \in Z^{2}(G,S^{*})$.
Denote by $\mathop{\rm Ind}\nolimits _{m}(S^{\lambda}G)$
the set of isomorphism classes of indecomposable
$S^{\lambda}G$-modules of $S$-rank $m$.
We exhibit rings $S^{\lambda}G$ for which
there exists a function $f_{\lambda}:
\mathbb{N} \rightarrow \mathbb{N}$ such
that $f_{\lambda}(n)\geq n$ and $\mathop{\rm Ind}\nolimits_{f_{\lambda}
(n)}(S^{\lambda}G)$ is an infinite set for
every natural $n>1$. In special cases $f_{\lambda}(\mathbb{N})$
contains every natural number $m>1$ such that
$\mathop{\rm Ind}\nolimits_{m}(S^{\lambda}G)$ is an infinite set.
We also introduce the concept of projective
$(S,W)$-representation type for the
group $G$ and we single out finite groups
of every type.
Keywords:
commutative local ring characteristic which field * multiplicative group subgroup * finite p group lambda twisted group ring group ring cocycle lambda * denote mathop ind nolimits lambda set isomorphism classes indecomposable lambda g modules s rank exhibit rings lambda which there exists function lambda mathbb rightarrow mathbb lambda geq mathop ind nolimits lambda lambda infinite set every natural special cases lambda mathbb contains every natural number mathop ind nolimits lambda infinite set introduce concept projective representation type group single out finite groups every type
Affiliations des auteurs :
Leonid F. Barannyk 1 ; Dariusz Klein 2
@article{10_4064_cm100_2_8,
author = {Leonid F. Barannyk and Dariusz Klein},
title = {Twisted group rings of strongly unbounded
representation type},
journal = {Colloquium Mathematicum},
pages = {265--287},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2004},
doi = {10.4064/cm100-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-8/}
}
TY - JOUR AU - Leonid F. Barannyk AU - Dariusz Klein TI - Twisted group rings of strongly unbounded representation type JO - Colloquium Mathematicum PY - 2004 SP - 265 EP - 287 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-8/ DO - 10.4064/cm100-2-8 LA - en ID - 10_4064_cm100_2_8 ER -
Leonid F. Barannyk; Dariusz Klein. Twisted group rings of strongly unbounded representation type. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 265-287. doi: 10.4064/cm100-2-8
Cité par Sources :