Global existence of axially symmetric solutions
to Navier–Stokes equations
with large angular component of velocity
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 243-263
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Global existence of axially symmetric solutions to the Navier–Stokes equations in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the ideal slip conditions on the boundary. We underline that there is no restriction on the angular component of velocity. We obtain two kinds of existence results. First, under assumptions necessary for the existence of weak solutions, we prove that the velocity belongs to $W_{4/3}^{2,1}({\mit \Omega }\times (0,T))$, so it satisfies the Serrin condition. Next, increasing regularity of the external force and initial data we prove existence of solutions (by the Leray–Schauder fixed point theorem) such that $v\in W_r^{2,1}({\mit \Omega }\times (0,T))$ with $r>4/3$, and we prove their uniqueness.
Keywords:
global existence axially symmetric solutions navier stokes equations cylinder axis symmetry removed proved solutions satisfy ideal slip conditions boundary underline there restriction angular component velocity obtain kinds existence results first under assumptions necessary existence weak solutions prove velocity belongs mit omega times satisfies serrin condition increasing regularity external force initial prove existence solutions leray schauder fixed point theorem mit omega times prove their uniqueness
Affiliations des auteurs :
Wojciech M. Zaj/aczkowski 1
@article{10_4064_cm100_2_7,
author = {Wojciech M. Zaj/aczkowski},
title = {Global existence of axially symmetric solutions
to {Navier{\textendash}Stokes} equations
with large angular component of velocity},
journal = {Colloquium Mathematicum},
pages = {243--263},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2004},
doi = {10.4064/cm100-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-7/}
}
TY - JOUR AU - Wojciech M. Zaj/aczkowski TI - Global existence of axially symmetric solutions to Navier–Stokes equations with large angular component of velocity JO - Colloquium Mathematicum PY - 2004 SP - 243 EP - 263 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-7/ DO - 10.4064/cm100-2-7 LA - en ID - 10_4064_cm100_2_7 ER -
%0 Journal Article %A Wojciech M. Zaj/aczkowski %T Global existence of axially symmetric solutions to Navier–Stokes equations with large angular component of velocity %J Colloquium Mathematicum %D 2004 %P 243-263 %V 100 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-7/ %R 10.4064/cm100-2-7 %G en %F 10_4064_cm100_2_7
Wojciech M. Zaj/aczkowski. Global existence of axially symmetric solutions to Navier–Stokes equations with large angular component of velocity. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 243-263. doi: 10.4064/cm100-2-7
Cité par Sources :