A new version of Local-Global Principle for annihilations of local cohomology modules
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 213-219.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a commutative Noetherian ring. Let $\mathfrak a$ and $\mathfrak b$ be ideals of $R$ and let $N$ be a finitely generated $R$-module. We introduce a generalization of the $\mathfrak b$-finiteness dimension of $f^{\mathfrak b}_{\mathfrak a}(N)$ relative to $\mathfrak a$ in the context of generalized local cohomology modules as $$f^{\mathfrak b}_{\mathfrak a}(M,N):= \hbox{inf} \{ i\geq 0\mid {\mathfrak b} \subseteq \sqrt{(0:_R H^i_{\mathfrak a}(M,N))}\,\}, $$ where $M$ is an $R$-module. We also show that $f^{\mathfrak b}_{\mathfrak a}(N)\leq f^{\mathfrak b}_{\mathfrak a}(M,N)$ for any $R$-module $M$. This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.
DOI : 10.4064/cm100-2-5
Keywords: commutative noetherian ring mathfrak mathfrak ideals finitely generated r module introduce generalization mathfrak b finiteness dimension mathfrak mathfrak relative mathfrak context generalized local cohomology modules mathfrak mathfrak hbox inf geq mid mathfrak subseteq sqrt mathfrak where r module mathfrak mathfrak leq mathfrak mathfrak r module yields version local global principle annihilation local cohomology modules moreover obtain generalization faltings lemma

K. Khashyarmanesh 1 ; M. Yassi 2 ; A. Abbasi 2

1 Institute for Studies in Theoretical Physics and Mathematics P.O. Box 19395-5746 Tehran, Iran
2 Department of Mathematics Mashhad University P.O. Box 1159-91775 Mashhad, Iran
@article{10_4064_cm100_2_5,
     author = {K. Khashyarmanesh and M. Yassi and A. Abbasi},
     title = {A new version of {Local-Global} {Principle} for annihilations
of local cohomology modules},
     journal = {Colloquium Mathematicum},
     pages = {213--219},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2004},
     doi = {10.4064/cm100-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/}
}
TY  - JOUR
AU  - K. Khashyarmanesh
AU  - M. Yassi
AU  - A. Abbasi
TI  - A new version of Local-Global Principle for annihilations
of local cohomology modules
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 213
EP  - 219
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/
DO  - 10.4064/cm100-2-5
LA  - en
ID  - 10_4064_cm100_2_5
ER  - 
%0 Journal Article
%A K. Khashyarmanesh
%A M. Yassi
%A A. Abbasi
%T A new version of Local-Global Principle for annihilations
of local cohomology modules
%J Colloquium Mathematicum
%D 2004
%P 213-219
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/
%R 10.4064/cm100-2-5
%G en
%F 10_4064_cm100_2_5
K. Khashyarmanesh; M. Yassi; A. Abbasi. A new version of Local-Global Principle for annihilations
of local cohomology modules. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 213-219. doi : 10.4064/cm100-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/

Cité par Sources :