A new version of Local-Global Principle for annihilations
of local cohomology modules
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 213-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a commutative Noetherian ring. Let
$\mathfrak a$ and $\mathfrak b$ be ideals of $R$ and let $N$ be a finitely generated
$R$-module. We introduce a generalization of the $\mathfrak b$-finiteness
dimension of $f^{\mathfrak b}_{\mathfrak a}(N)$ relative to $\mathfrak a$ in the context
of generalized local cohomology modules as
$$f^{\mathfrak b}_{\mathfrak a}(M,N):= \hbox{inf} \{ i\geq 0\mid {\mathfrak b}
\subseteq \sqrt{(0:_R H^i_{\mathfrak a}(M,N))}\,\}, $$
where $M$ is an $R$-module. We also show that $f^{\mathfrak b}_{\mathfrak a}(N)\leq
f^{\mathfrak b}_{\mathfrak a}(M,N)$ for any $R$-module $M$. This yields a new
version of the Local-Global Principle for annihilation of local
cohomology modules. Moreover, we obtain a generalization of the
Faltings Lemma.
Keywords:
commutative noetherian ring mathfrak mathfrak ideals finitely generated r module introduce generalization mathfrak b finiteness dimension mathfrak mathfrak relative mathfrak context generalized local cohomology modules mathfrak mathfrak hbox inf geq mid mathfrak subseteq sqrt mathfrak where r module mathfrak mathfrak leq mathfrak mathfrak r module yields version local global principle annihilation local cohomology modules moreover obtain generalization faltings lemma
Affiliations des auteurs :
K. Khashyarmanesh 1 ; M. Yassi 2 ; A. Abbasi 2
@article{10_4064_cm100_2_5,
author = {K. Khashyarmanesh and M. Yassi and A. Abbasi},
title = {A new version of {Local-Global} {Principle} for annihilations
of local cohomology modules},
journal = {Colloquium Mathematicum},
pages = {213--219},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2004},
doi = {10.4064/cm100-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/}
}
TY - JOUR AU - K. Khashyarmanesh AU - M. Yassi AU - A. Abbasi TI - A new version of Local-Global Principle for annihilations of local cohomology modules JO - Colloquium Mathematicum PY - 2004 SP - 213 EP - 219 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/ DO - 10.4064/cm100-2-5 LA - en ID - 10_4064_cm100_2_5 ER -
%0 Journal Article %A K. Khashyarmanesh %A M. Yassi %A A. Abbasi %T A new version of Local-Global Principle for annihilations of local cohomology modules %J Colloquium Mathematicum %D 2004 %P 213-219 %V 100 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm100-2-5/ %R 10.4064/cm100-2-5 %G en %F 10_4064_cm100_2_5
K. Khashyarmanesh; M. Yassi; A. Abbasi. A new version of Local-Global Principle for annihilations of local cohomology modules. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 213-219. doi: 10.4064/cm100-2-5
Cité par Sources :