The Borel structure of some non-Lebesgue sets
Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 95-101
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.
Mots-clés :
given function classes related real derivatives examine structure set points which lebesgue points particular prove summable approximately continuous function non lebesgue set nowhere dense nullset borel class
Affiliations des auteurs :
Don L. Hancock 1
@article{10_4064_cm100_1_9,
author = {Don L. Hancock},
title = {The {Borel} structure of some {non-Lebesgue} sets},
journal = {Colloquium Mathematicum},
pages = {95--101},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2004},
doi = {10.4064/cm100-1-9},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-1-9/}
}
Don L. Hancock. The Borel structure of some non-Lebesgue sets. Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 95-101. doi: 10.4064/cm100-1-9
Cité par Sources :