On Gaussian kernel estimates on groups
Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 77-90
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give new and simple sufficient conditions for Gaussian upper bounds
for a convolution semigroup on a unimodular locally compact
group.
These conditions involve certain semigroup estimates in $L^2(G)$.
We describe an application for estimates of heat kernels of
complex subelliptic operators on
unimodular Lie groups.
Keywords:
simple sufficient conditions gaussian upper bounds convolution semigroup unimodular locally compact group these conditions involve certain semigroup estimates describe application estimates heat kernels complex subelliptic operators unimodular lie groups
Affiliations des auteurs :
Nick Dungey 1
@article{10_4064_cm100_1_7,
author = {Nick Dungey},
title = {On {Gaussian} kernel estimates on groups},
journal = {Colloquium Mathematicum},
pages = {77--90},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2004},
doi = {10.4064/cm100-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm100-1-7/}
}
Nick Dungey. On Gaussian kernel estimates on groups. Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 77-90. doi: 10.4064/cm100-1-7
Cité par Sources :