Tame triangular matrix algebras
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 259-303
We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra $T_2(A)$ of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which $T_2(A)$ is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.
@article{10_4064_cm_86_2_259_303,
author = {Zbigniew Leszczy\'nski and Andrzej Skowro\'nski},
title = {Tame triangular matrix algebras},
journal = {Colloquium Mathematicum},
pages = {259--303},
year = {2000},
volume = {86},
number = {2},
doi = {10.4064/cm-86-2-259-303},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/}
}
TY - JOUR AU - Zbigniew Leszczyński AU - Andrzej Skowroński TI - Tame triangular matrix algebras JO - Colloquium Mathematicum PY - 2000 SP - 259 EP - 303 VL - 86 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/ DO - 10.4064/cm-86-2-259-303 LA - en ID - 10_4064_cm_86_2_259_303 ER -
Zbigniew Leszczyński; Andrzej Skowroński. Tame triangular matrix algebras. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 259-303. doi: 10.4064/cm-86-2-259-303
Cité par Sources :