Tame triangular matrix algebras
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 259-303.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra $T_2(A)$ of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which $T_2(A)$ is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.
DOI : 10.4064/cm-86-2-259-303

Zbigniew Leszczyński 1 ; Andrzej Skowroński 1

1
@article{10_4064_cm_86_2_259_303,
     author = {Zbigniew Leszczy\'nski and Andrzej Skowro\'nski},
     title = {Tame triangular matrix algebras},
     journal = {Colloquium Mathematicum},
     pages = {259--303},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-86-2-259-303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/}
}
TY  - JOUR
AU  - Zbigniew Leszczyński
AU  - Andrzej Skowroński
TI  - Tame triangular matrix algebras
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 259
EP  - 303
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/
DO  - 10.4064/cm-86-2-259-303
LA  - en
ID  - 10_4064_cm_86_2_259_303
ER  - 
%0 Journal Article
%A Zbigniew Leszczyński
%A Andrzej Skowroński
%T Tame triangular matrix algebras
%J Colloquium Mathematicum
%D 2000
%P 259-303
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/
%R 10.4064/cm-86-2-259-303
%G en
%F 10_4064_cm_86_2_259_303
Zbigniew Leszczyński; Andrzej Skowroński. Tame triangular matrix algebras. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 259-303. doi : 10.4064/cm-86-2-259-303. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-259-303/

Cité par Sources :