Perturbation of analytic operators and temporal regularity of discrete heat kernels
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 189-201
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In analogy to the analyticity condition $∥ Ae^{tA}∥ ≤ Ct^{-1}$, t > 0, for a continuous time semigroup $(e^{tA})_{t ≥ 0}$, a bounded operator T is called analytic if the discrete time semigroup $(T^n)_{n ∈ ℕ}$ satisfies $∥ (T-I)T^{n}∥ ≤ Cn^{-1}$, n ∈ ℕ. We generalize O. Nevanlinna's characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that $∥ R(λ_0,T)-R(λ_0,S)∥$ is small enough for some $λ_{0} ∈ ϱ(T) ∩ ϱ(S)$, then the type $ω$ of the semigroup $(e^{t(S-I)})$ also controls the analyticity of S in the sense that $∥(S-I)S^{n}∥ ≤ C(ω+n^{-1})e^{ωn}$, n ∈ ℕ. As an application we generalize and give a simple proof of a result by M. Christ on the temporal regularity of random walks T on graphs of polynomial volume growth. On arbitrary spaces Ω of at most exponential volume growth we obtain this regularity for any powerbounded and analytic operator T on $L_{2}(Ω)$ with a heat kernel satisfying Gaussian upper bounds.
@article{10_4064_cm_86_2_189_201,
author = {S\"onke Blunck},
title = {Perturbation of analytic operators and temporal regularity of discrete heat kernels},
journal = {Colloquium Mathematicum},
pages = {189--201},
year = {2000},
volume = {86},
number = {2},
doi = {10.4064/cm-86-2-189-201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/}
}
TY - JOUR AU - Sönke Blunck TI - Perturbation of analytic operators and temporal regularity of discrete heat kernels JO - Colloquium Mathematicum PY - 2000 SP - 189 EP - 201 VL - 86 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/ DO - 10.4064/cm-86-2-189-201 LA - en ID - 10_4064_cm_86_2_189_201 ER -
%0 Journal Article %A Sönke Blunck %T Perturbation of analytic operators and temporal regularity of discrete heat kernels %J Colloquium Mathematicum %D 2000 %P 189-201 %V 86 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/ %R 10.4064/cm-86-2-189-201 %G en %F 10_4064_cm_86_2_189_201
Sönke Blunck. Perturbation of analytic operators and temporal regularity of discrete heat kernels. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 189-201. doi: 10.4064/cm-86-2-189-201
Cité par Sources :