Perturbation of analytic operators and temporal regularity of discrete heat kernels
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 189-201.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In analogy to the analyticity condition $∥ Ae^{tA}∥ ≤ Ct^{-1}$, t > 0, for a continuous time semigroup $(e^{tA})_{t ≥ 0}$, a bounded operator T is called analytic if the discrete time semigroup $(T^n)_{n ∈ ℕ}$ satisfies $∥ (T-I)T^{n}∥ ≤ Cn^{-1}$, n ∈ ℕ. We generalize O. Nevanlinna's characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that $∥ R(λ_0,T)-R(λ_0,S)∥$ is small enough for some $λ_{0} ∈ ϱ(T) ∩ ϱ(S)$, then the type $ω$ of the semigroup $(e^{t(S-I)})$ also controls the analyticity of S in the sense that $∥(S-I)S^{n}∥ ≤ C(ω+n^{-1})e^{ωn}$, n ∈ ℕ. As an application we generalize and give a simple proof of a result by M. Christ on the temporal regularity of random walks T on graphs of polynomial volume growth. On arbitrary spaces Ω of at most exponential volume growth we obtain this regularity for any powerbounded and analytic operator T on $L_{2}(Ω)$ with a heat kernel satisfying Gaussian upper bounds.
DOI : 10.4064/cm-86-2-189-201

Sönke Blunck 1

1
@article{10_4064_cm_86_2_189_201,
     author = {S\"onke Blunck},
     title = {Perturbation of analytic operators and temporal regularity of discrete heat kernels},
     journal = {Colloquium Mathematicum},
     pages = {189--201},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-86-2-189-201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/}
}
TY  - JOUR
AU  - Sönke Blunck
TI  - Perturbation of analytic operators and temporal regularity of discrete heat kernels
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 189
EP  - 201
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/
DO  - 10.4064/cm-86-2-189-201
LA  - en
ID  - 10_4064_cm_86_2_189_201
ER  - 
%0 Journal Article
%A Sönke Blunck
%T Perturbation of analytic operators and temporal regularity of discrete heat kernels
%J Colloquium Mathematicum
%D 2000
%P 189-201
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/
%R 10.4064/cm-86-2-189-201
%G en
%F 10_4064_cm_86_2_189_201
Sönke Blunck. Perturbation of analytic operators and temporal regularity of discrete heat kernels. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 189-201. doi : 10.4064/cm-86-2-189-201. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-189-201/

Cité par Sources :