Probabilistic construction of small strongly sum-free sets via large Sidon sets
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 171-176
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give simple randomized algorithms leading to new upper bounds for combinatorial problems of Choi and Erdős: For an arbitrary additive group G let $P_n(G)$ denote the set of all subsets S of G with n elements having the property that 0 is not in S+S. Call a subset A of G admissible with respect to a set S from $P_n(G)$ if the sum of each pair of distinct elements of A lies outside S. Suppose first that S is a subset of the positive integers in the interval [2n,4n). Denote by f(S) the number of elements in a maximum subset of [n,2n) admissible with respect to S. Choi showed that $f(n):=min{|S|+f(S)| S ⊆ [2n,4n)} = On^{3/4})$. We improve this bound to $O(n ln(n))^{2/3})$. Turning to a problem of Erdős, suppose that S is an element of $P_n(G)$, where G is an arbitrary additive group, and denote by h(S) the maximum cardinality of a subset A of S admissible with respect to S. We show $h(n):=min{h(S) | G a group, S ∈ P_n(G)}=O(ln(n))^2)$. Our approach relies on the existence of large Sidon sets.
Affiliations des auteurs :
Andreas Schoen 1 ; Tomasz Srivastav 1 ; Anand Baltz 1
@article{10_4064_cm_86_2_171_176,
author = {Andreas Schoen and Tomasz Srivastav and Anand Baltz},
title = {Probabilistic construction of small strongly sum-free sets via large {Sidon} sets},
journal = {Colloquium Mathematicum},
pages = {171--176},
year = {2000},
volume = {86},
number = {2},
doi = {10.4064/cm-86-2-171-176},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/}
}
TY - JOUR AU - Andreas Schoen AU - Tomasz Srivastav AU - Anand Baltz TI - Probabilistic construction of small strongly sum-free sets via large Sidon sets JO - Colloquium Mathematicum PY - 2000 SP - 171 EP - 176 VL - 86 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/ DO - 10.4064/cm-86-2-171-176 LA - en ID - 10_4064_cm_86_2_171_176 ER -
%0 Journal Article %A Andreas Schoen %A Tomasz Srivastav %A Anand Baltz %T Probabilistic construction of small strongly sum-free sets via large Sidon sets %J Colloquium Mathematicum %D 2000 %P 171-176 %V 86 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/ %R 10.4064/cm-86-2-171-176 %G en %F 10_4064_cm_86_2_171_176
Andreas Schoen; Tomasz Srivastav; Anand Baltz. Probabilistic construction of small strongly sum-free sets via large Sidon sets. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 171-176. doi: 10.4064/cm-86-2-171-176
Cité par Sources :