Probabilistic construction of small strongly sum-free sets via large Sidon sets
Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 171-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give simple randomized algorithms leading to new upper bounds for combinatorial problems of Choi and Erdős: For an arbitrary additive group G let $P_n(G)$ denote the set of all subsets S of G with n elements having the property that 0 is not in S+S. Call a subset A of G admissible with respect to a set S from $P_n(G)$ if the sum of each pair of distinct elements of A lies outside S. Suppose first that S is a subset of the positive integers in the interval [2n,4n). Denote by f(S) the number of elements in a maximum subset of [n,2n) admissible with respect to S. Choi showed that $f(n):=min{|S|+f(S)| S ⊆ [2n,4n)} = On^{3/4})$. We improve this bound to $O(n ln(n))^{2/3})$. Turning to a problem of Erdős, suppose that S is an element of $P_n(G)$, where G is an arbitrary additive group, and denote by h(S) the maximum cardinality of a subset A of S admissible with respect to S. We show $h(n):=min{h(S) | G a group, S ∈ P_n(G)}=O(ln(n))^2)$. Our approach relies on the existence of large Sidon sets.
DOI : 10.4064/cm-86-2-171-176

Andreas Schoen 1 ; Tomasz Srivastav 1 ; Anand Baltz 1

1
@article{10_4064_cm_86_2_171_176,
     author = {Andreas Schoen and Tomasz Srivastav and Anand Baltz},
     title = {Probabilistic construction of small strongly sum-free sets via large {Sidon} sets},
     journal = {Colloquium Mathematicum},
     pages = {171--176},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-86-2-171-176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/}
}
TY  - JOUR
AU  - Andreas Schoen
AU  - Tomasz Srivastav
AU  - Anand Baltz
TI  - Probabilistic construction of small strongly sum-free sets via large Sidon sets
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 171
EP  - 176
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/
DO  - 10.4064/cm-86-2-171-176
LA  - en
ID  - 10_4064_cm_86_2_171_176
ER  - 
%0 Journal Article
%A Andreas Schoen
%A Tomasz Srivastav
%A Anand Baltz
%T Probabilistic construction of small strongly sum-free sets via large Sidon sets
%J Colloquium Mathematicum
%D 2000
%P 171-176
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/
%R 10.4064/cm-86-2-171-176
%G en
%F 10_4064_cm_86_2_171_176
Andreas Schoen; Tomasz Srivastav; Anand Baltz. Probabilistic construction of small strongly sum-free sets via large Sidon sets. Colloquium Mathematicum, Tome 86 (2000) no. 2, pp. 171-176. doi : 10.4064/cm-86-2-171-176. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-2-171-176/

Cité par Sources :