Symmetric partitions and pairings
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The lattice of partitions and the sublattice of non-crossing partitions of a finite set are important objects in combinatorics. In this paper another sublattice of the partitions is investigated, which is formed by the symmetric partitions. The measure whose nth moment is given by the number of non-crossing symmetric partitions of n elements is determined explicitly to be the "symmetric" analogue of the free Poisson law.
DOI : 10.4064/cm-86-1-93-101

Ferenc Oravecz 1

1
@article{10_4064_cm_86_1_93_101,
     author = {Ferenc Oravecz},
     title = {Symmetric partitions and pairings},
     journal = {Colloquium Mathematicum},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-93-101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-93-101/}
}
TY  - JOUR
AU  - Ferenc Oravecz
TI  - Symmetric partitions and pairings
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 93
EP  - 101
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-93-101/
DO  - 10.4064/cm-86-1-93-101
LA  - en
ID  - 10_4064_cm_86_1_93_101
ER  - 
%0 Journal Article
%A Ferenc Oravecz
%T Symmetric partitions and pairings
%J Colloquium Mathematicum
%D 2000
%P 93-101
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-93-101/
%R 10.4064/cm-86-1-93-101
%G en
%F 10_4064_cm_86_1_93_101
Ferenc Oravecz. Symmetric partitions and pairings. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 93-101. doi : 10.4064/cm-86-1-93-101. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-93-101/

Cité par Sources :