$H^1$-BMO duality on graphs
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 67-91
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^{1}_{max}$ is equal to $H_{at}^{1}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^{p}_{max}$ for p ≤ 1 close enough to 1.
@article{10_4064_cm_86_1_67_91,
author = {Emmanuel Russ},
title = {$H^1${-BMO} duality on graphs},
journal = {Colloquium Mathematicum},
pages = {67--91},
year = {2000},
volume = {86},
number = {1},
doi = {10.4064/cm-86-1-67-91},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-67-91/}
}
Emmanuel Russ. $H^1$-BMO duality on graphs. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 67-91. doi: 10.4064/cm-86-1-67-91
Cité par Sources :