$H^1$-BMO duality on graphs
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 67-91.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space $H^{1}_{max}$ is equal to $H_{at}^{1}$, and therefore that its dual is BMO. We also prove the atomic decomposition for $H^{p}_{max}$ for p ≤ 1 close enough to 1.
DOI : 10.4064/cm-86-1-67-91

Emmanuel Russ 1

1
@article{10_4064_cm_86_1_67_91,
     author = {Emmanuel Russ},
     title = {$H^1${-BMO} duality on graphs},
     journal = {Colloquium Mathematicum},
     pages = {67--91},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-67-91},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-67-91/}
}
TY  - JOUR
AU  - Emmanuel Russ
TI  - $H^1$-BMO duality on graphs
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 67
EP  - 91
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-67-91/
DO  - 10.4064/cm-86-1-67-91
LA  - en
ID  - 10_4064_cm_86_1_67_91
ER  - 
%0 Journal Article
%A Emmanuel Russ
%T $H^1$-BMO duality on graphs
%J Colloquium Mathematicum
%D 2000
%P 67-91
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-67-91/
%R 10.4064/cm-86-1-67-91
%G en
%F 10_4064_cm_86_1_67_91
Emmanuel Russ. $H^1$-BMO duality on graphs. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 67-91. doi : 10.4064/cm-86-1-67-91. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-67-91/

Cité par Sources :