Blow up, global existence and growth rate estimates in nonlinear parabolic systems
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 43-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. $u_{it} - d_{i} Δu_{i} = \prod_{k=1}^m u_{k}^{p_k^i}, i=1,...,m, x ∈ ℝ^{N}, t > 0,$ with nonnegative, bounded, continuous initial values and $p_{k}^{i} ≥ 0$, $i,k = 1,...,m$, $d_i > 0$, $i = 1,...,m$. For solutions which blow up at $t = T ≤ ∞$, we derive the following bounds on the blow up rate: $u_i(x,t) ≤ C(T - t)^{-α_{i}}$ with C > 0 and $α_i$ defined in terms of $p_k^i$.
Keywords:
invariant manifold, reaction-diffusion system, invariant region, global existence, blow up
Affiliations des auteurs :
Joanna Rencławowicz 1
@article{10_4064_cm_86_1_43_66,
author = {Joanna Renc{\l}awowicz},
title = {Blow up, global existence and growth rate estimates in nonlinear parabolic systems},
journal = {Colloquium Mathematicum},
pages = {43--66},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2000},
doi = {10.4064/cm-86-1-43-66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-43-66/}
}
TY - JOUR AU - Joanna Rencławowicz TI - Blow up, global existence and growth rate estimates in nonlinear parabolic systems JO - Colloquium Mathematicum PY - 2000 SP - 43 EP - 66 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-43-66/ DO - 10.4064/cm-86-1-43-66 LA - en ID - 10_4064_cm_86_1_43_66 ER -
%0 Journal Article %A Joanna Rencławowicz %T Blow up, global existence and growth rate estimates in nonlinear parabolic systems %J Colloquium Mathematicum %D 2000 %P 43-66 %V 86 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-43-66/ %R 10.4064/cm-86-1-43-66 %G en %F 10_4064_cm_86_1_43_66
Joanna Rencławowicz. Blow up, global existence and growth rate estimates in nonlinear parabolic systems. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 43-66. doi: 10.4064/cm-86-1-43-66
Cité par Sources :