A note on a conjecture of Jeśmanowicz
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 25-30.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let a, b, c be relatively prime positive integers such that $a^2+b^2=c^2$. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of $(an)^x+(bn)^y=(cn)^z$ in positive integers is x=y=z=2. If n=1, then, equivalently, the equation $(u^2-v^2)^x+(2uv)^y=(u^2+v^2)^z$, for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.
DOI : 10.4064/cm-86-1-25-30

Moujie Deng 1 ; G. Cohen 1

1
@article{10_4064_cm_86_1_25_30,
     author = {Moujie Deng and G. Cohen},
     title = {A note on a conjecture of {Je\'smanowicz}},
     journal = {Colloquium Mathematicum},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-25-30},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-25-30/}
}
TY  - JOUR
AU  - Moujie Deng
AU  - G. Cohen
TI  - A note on a conjecture of Jeśmanowicz
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 25
EP  - 30
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-25-30/
DO  - 10.4064/cm-86-1-25-30
LA  - pl
ID  - 10_4064_cm_86_1_25_30
ER  - 
%0 Journal Article
%A Moujie Deng
%A G. Cohen
%T A note on a conjecture of Jeśmanowicz
%J Colloquium Mathematicum
%D 2000
%P 25-30
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-25-30/
%R 10.4064/cm-86-1-25-30
%G pl
%F 10_4064_cm_86_1_25_30
Moujie Deng; G. Cohen. A note on a conjecture of Jeśmanowicz. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 25-30. doi : 10.4064/cm-86-1-25-30. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-25-30/

Cité par Sources :