Approximating Radon measures on first-countable compact spaces
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 15-23
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The assertion every Radon measure defined on a first-countable compact space is uniformly regular is shown to be relatively consistent. We prove an analogous result on the existence of uniformly distributed sequences in compact spaces of small character. We also present two related examples constructed under CH.
@article{10_4064_cm_86_1_15_23,
author = {Grzegorz Plebanek},
title = {Approximating {Radon} measures on first-countable compact spaces},
journal = {Colloquium Mathematicum},
pages = {15--23},
year = {2000},
volume = {86},
number = {1},
doi = {10.4064/cm-86-1-15-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-15-23/}
}
TY - JOUR AU - Grzegorz Plebanek TI - Approximating Radon measures on first-countable compact spaces JO - Colloquium Mathematicum PY - 2000 SP - 15 EP - 23 VL - 86 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-15-23/ DO - 10.4064/cm-86-1-15-23 LA - en ID - 10_4064_cm_86_1_15_23 ER -
Grzegorz Plebanek. Approximating Radon measures on first-countable compact spaces. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 15-23. doi: 10.4064/cm-86-1-15-23
Cité par Sources :