Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 111-135
The main purpose of this paper is to exhibit the cutoff phenomenon, studied by Aldous and Diaconis [AD]. Let $Q^{*k}$ denote a transition kernel after k steps and π be a stationary measure. We have to find a critical value $k_n$ for which the total variation norm between $Q^{*k}$ and π stays very close to 1 for $k ≪ k_n$, and falls rapidly to a value close to 0 for $k ≥ k_n$ with a fall-off phase much shorter than $k_n$. According to the work of Diaconis and Shahshahani [DS], one can naturally conjecture, for a conjugacy class with n-c fixed points, with $c ≪ n$, that the associated random walk presents a cutoff, with critical value equal to (1/c)nln(n). Using Fourier analysis, we prove that, in this context, the critical value can not be less than (1/c)nln(n). We also prove that the conjecture is true for conjugacy classes with at least n-6 fixed points and for a conjugacy class of cycle length 7.
@article{10_4064_cm_86_1_111_135,
author = {Sandrine Roussel},
title = {Ph\'enom\`ene de cutoff pour certaines marches al\'eatoires sur le groupe sym\'etrique},
journal = {Colloquium Mathematicum},
pages = {111--135},
year = {2000},
volume = {86},
number = {1},
doi = {10.4064/cm-86-1-111-135},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/}
}
TY - JOUR AU - Sandrine Roussel TI - Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique JO - Colloquium Mathematicum PY - 2000 SP - 111 EP - 135 VL - 86 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/ DO - 10.4064/cm-86-1-111-135 LA - fr ID - 10_4064_cm_86_1_111_135 ER -
%0 Journal Article %A Sandrine Roussel %T Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique %J Colloquium Mathematicum %D 2000 %P 111-135 %V 86 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/ %R 10.4064/cm-86-1-111-135 %G fr %F 10_4064_cm_86_1_111_135
Sandrine Roussel. Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 111-135. doi: 10.4064/cm-86-1-111-135
Cité par Sources :