Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique
Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 111-135.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main purpose of this paper is to exhibit the cutoff phenomenon, studied by Aldous and Diaconis [AD]. Let $Q^{*k}$ denote a transition kernel after k steps and π be a stationary measure. We have to find a critical value $k_n$ for which the total variation norm between $Q^{*k}$ and π stays very close to 1 for $k ≪ k_n$, and falls rapidly to a value close to 0 for $k ≥ k_n$ with a fall-off phase much shorter than $k_n$. According to the work of Diaconis and Shahshahani [DS], one can naturally conjecture, for a conjugacy class with n-c fixed points, with $c ≪ n$, that the associated random walk presents a cutoff, with critical value equal to (1/c)nln(n). Using Fourier analysis, we prove that, in this context, the critical value can not be less than (1/c)nln(n). We also prove that the conjecture is true for conjugacy classes with at least n-6 fixed points and for a conjugacy class of cycle length 7.
DOI : 10.4064/cm-86-1-111-135

Sandrine Roussel 1

1
@article{10_4064_cm_86_1_111_135,
     author = {Sandrine Roussel},
     title = {Ph\'enom\`ene de cutoff pour certaines marches al\'eatoires sur le groupe sym\'etrique},
     journal = {Colloquium Mathematicum},
     pages = {111--135},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-86-1-111-135},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/}
}
TY  - JOUR
AU  - Sandrine Roussel
TI  - Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 111
EP  - 135
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/
DO  - 10.4064/cm-86-1-111-135
LA  - fr
ID  - 10_4064_cm_86_1_111_135
ER  - 
%0 Journal Article
%A Sandrine Roussel
%T Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique
%J Colloquium Mathematicum
%D 2000
%P 111-135
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/
%R 10.4064/cm-86-1-111-135
%G fr
%F 10_4064_cm_86_1_111_135
Sandrine Roussel. Phénomène de cutoff pour certaines marches aléatoires sur le groupe symétrique. Colloquium Mathematicum, Tome 86 (2000) no. 1, pp. 111-135. doi : 10.4064/cm-86-1-111-135. http://geodesic.mathdoc.fr/articles/10.4064/cm-86-1-111-135/

Cité par Sources :