The generic transformation has roots of all orders
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 521-547.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the sense of the Baire Category Theorem we show that the generic transformation T has roots of all orders (RAO theorem). The argument appears novel in that it proceeds by establishing that the set of such T is not meager - and then appeals to a Zero-One Law (Lemma 2). On the group Ω of (invertible measure-preserving) transformations, §D shows that the squaring map p: S → S^{2} is topologically complex in that both the locally-dense and locally-lacunary points of p are dense (Theorem 23). The last section, §E, discusses the relation between RAO and a recent example of Blair Madore. Answering a question of the author's, Madore constructs a transformation with a square-root chain of each finite length, yet possessing no infinite square-root chain.
DOI : 10.4064/cm-84/85-2-521-547

Jonathan King 1

1
@article{10_4064_cm_84_85_2_521_547,
     author = {Jonathan King},
     title = {The generic transformation has roots of all orders},
     journal = {Colloquium Mathematicum},
     pages = {521--547},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-84/85-2-521-547},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-521-547/}
}
TY  - JOUR
AU  - Jonathan King
TI  - The generic transformation has roots of all orders
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 521
EP  - 547
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-521-547/
DO  - 10.4064/cm-84/85-2-521-547
LA  - en
ID  - 10_4064_cm_84_85_2_521_547
ER  - 
%0 Journal Article
%A Jonathan King
%T The generic transformation has roots of all orders
%J Colloquium Mathematicum
%D 2000
%P 521-547
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-521-547/
%R 10.4064/cm-84/85-2-521-547
%G en
%F 10_4064_cm_84_85_2_521_547
Jonathan King. The generic transformation has roots of all orders. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 521-547. doi : 10.4064/cm-84/85-2-521-547. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-521-547/

Cité par Sources :