Complete positivity of entropy and non-Bernoullicity for transformation groups
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 421-429.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The existence of non-Bernoullian actions with completely positive entropy is proved for a class of countable amenable groups which includes, in particular, a class of Abelian groups and groups with non-trivial finite subgroups. For this purpose, we apply a reverse version of the Rudolph-Weiss theorem.
DOI : 10.4064/cm-84/85-2-421-429

Valentin Golodets 1 ; Sergey Sinel'shchikov 1

1
@article{10_4064_cm_84_85_2_421_429,
     author = {Valentin Golodets and Sergey Sinel'shchikov},
     title = {Complete positivity of entropy and {non-Bernoullicity} for transformation groups},
     journal = {Colloquium Mathematicum},
     pages = {421--429},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-84/85-2-421-429},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-421-429/}
}
TY  - JOUR
AU  - Valentin Golodets
AU  - Sergey Sinel'shchikov
TI  - Complete positivity of entropy and non-Bernoullicity for transformation groups
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 421
EP  - 429
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-421-429/
DO  - 10.4064/cm-84/85-2-421-429
LA  - en
ID  - 10_4064_cm_84_85_2_421_429
ER  - 
%0 Journal Article
%A Valentin Golodets
%A Sergey Sinel'shchikov
%T Complete positivity of entropy and non-Bernoullicity for transformation groups
%J Colloquium Mathematicum
%D 2000
%P 421-429
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-421-429/
%R 10.4064/cm-84/85-2-421-429
%G en
%F 10_4064_cm_84_85_2_421_429
Valentin Golodets; Sergey Sinel'shchikov. Complete positivity of entropy and non-Bernoullicity for transformation groups. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 421-429. doi : 10.4064/cm-84/85-2-421-429. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-421-429/

Cité par Sources :