Residuality of dynamical morphisms
Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 307-317
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.
Affiliations des auteurs :
R. Burton 1 ; M. Keane 1 ; Jacek Serafin 1
@article{10_4064_cm_84_85_2_307_317,
author = {R. Burton and M. Keane and Jacek Serafin},
title = {Residuality of dynamical morphisms},
journal = {Colloquium Mathematicum},
pages = {307--317},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2000},
doi = {10.4064/cm-84/85-2-307-317},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-307-317/}
}
TY - JOUR AU - R. Burton AU - M. Keane AU - Jacek Serafin TI - Residuality of dynamical morphisms JO - Colloquium Mathematicum PY - 2000 SP - 307 EP - 317 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-2-307-317/ DO - 10.4064/cm-84/85-2-307-317 LA - en ID - 10_4064_cm_84_85_2_307_317 ER -
R. Burton; M. Keane; Jacek Serafin. Residuality of dynamical morphisms. Colloquium Mathematicum, Tome 84 (2000) no. 2, pp. 307-317. doi: 10.4064/cm-84/85-2-307-317
Cité par Sources :