Dynamical systems arising from elliptic curves
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 95-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We exhibit a family of dynamical systems arising from rational points on elliptic curves in an attempt to mimic the familiar toral automorphisms. At the non-archimedean primes, a continuous map is constructed on the local elliptic curve whose topological entropy is given by the local canonical height. Also, a precise formula for the periodic points is given. There follows a discussion of how these local results may be glued together to give a map on the adelic curve. We are able to give a map whose entropy is the global canonical height and whose periodic points are counted asymptotically by the real division polynomial (although the archimedean component of the map is artificial). Finally, we set out a precise conjecture about the existence of elliptic dynamical systems and discuss a possible connection with mathematical physics.
DOI : 10.4064/cm-84/85-1-95-107

P. D'Ambros 1 ; G. Everest 1 ; R. Miles 1 ; T. Ward 1

1
@article{10_4064_cm_84_85_1_95_107,
     author = {P. D'Ambros and G. Everest and R. Miles and T. Ward},
     title = {Dynamical systems arising from elliptic curves},
     journal = {Colloquium Mathematicum},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-95-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-95-107/}
}
TY  - JOUR
AU  - P. D'Ambros
AU  - G. Everest
AU  - R. Miles
AU  - T. Ward
TI  - Dynamical systems arising from elliptic curves
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 95
EP  - 107
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-95-107/
DO  - 10.4064/cm-84/85-1-95-107
LA  - en
ID  - 10_4064_cm_84_85_1_95_107
ER  - 
%0 Journal Article
%A P. D'Ambros
%A G. Everest
%A R. Miles
%A T. Ward
%T Dynamical systems arising from elliptic curves
%J Colloquium Mathematicum
%D 2000
%P 95-107
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-95-107/
%R 10.4064/cm-84/85-1-95-107
%G en
%F 10_4064_cm_84_85_1_95_107
P. D'Ambros; G. Everest; R. Miles; T. Ward. Dynamical systems arising from elliptic curves. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 95-107. doi : 10.4064/cm-84/85-1-95-107. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-95-107/

Cité par Sources :