Stretching the Oxtoby-Ulam Theorem
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 83-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On a manifold X of dimension at least two, let μ be a nonatomic measure of full support with μ(∂X) = 0. The Oxtoby-Ulam Theorem says that ergodicity of μ is a residual property in the group of homeomorphisms which preserve μ. Daalderop and Fokkink have recently shown that density of periodic points is residual as well. We provide a proof of their result which replaces the dependence upon the Annulus Theorem by a direct construction which assures topologically robust periodic points.
DOI : 10.4064/cm-84/85-1-83-94

Ethan Akin 1

1
@article{10_4064_cm_84_85_1_83_94,
     author = {Ethan Akin},
     title = {Stretching the {Oxtoby-Ulam} {Theorem}},
     journal = {Colloquium Mathematicum},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-83-94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-83-94/}
}
TY  - JOUR
AU  - Ethan Akin
TI  - Stretching the Oxtoby-Ulam Theorem
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 83
EP  - 94
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-83-94/
DO  - 10.4064/cm-84/85-1-83-94
LA  - en
ID  - 10_4064_cm_84_85_1_83_94
ER  - 
%0 Journal Article
%A Ethan Akin
%T Stretching the Oxtoby-Ulam Theorem
%J Colloquium Mathematicum
%D 2000
%P 83-94
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-83-94/
%R 10.4064/cm-84/85-1-83-94
%G en
%F 10_4064_cm_84_85_1_83_94
Ethan Akin. Stretching the Oxtoby-Ulam Theorem. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 83-94. doi : 10.4064/cm-84/85-1-83-94. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-83-94/

Cité par Sources :