Large deviations for generic stationary processes
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 75-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
Affiliations des auteurs :
Emmanuel Lesigne 1 ; Dalibor Volný 1
@article{10_4064_cm_84_85_1_75_82,
author = {Emmanuel Lesigne and Dalibor Voln\'y},
title = {Large deviations for generic stationary processes},
journal = {Colloquium Mathematicum},
pages = {75--82},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2000},
doi = {10.4064/cm-84/85-1-75-82},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/}
}
TY - JOUR AU - Emmanuel Lesigne AU - Dalibor Volný TI - Large deviations for generic stationary processes JO - Colloquium Mathematicum PY - 2000 SP - 75 EP - 82 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/ DO - 10.4064/cm-84/85-1-75-82 LA - en ID - 10_4064_cm_84_85_1_75_82 ER -
%0 Journal Article %A Emmanuel Lesigne %A Dalibor Volný %T Large deviations for generic stationary processes %J Colloquium Mathematicum %D 2000 %P 75-82 %V 84 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/ %R 10.4064/cm-84/85-1-75-82 %G en %F 10_4064_cm_84_85_1_75_82
Emmanuel Lesigne; Dalibor Volný. Large deviations for generic stationary processes. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 75-82. doi: 10.4064/cm-84/85-1-75-82
Cité par Sources :