Large deviations for generic stationary processes
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.
DOI : 10.4064/cm-84/85-1-75-82

Emmanuel Lesigne 1 ; Dalibor Volný 1

1
@article{10_4064_cm_84_85_1_75_82,
     author = {Emmanuel Lesigne and Dalibor Voln\'y},
     title = {Large deviations for generic stationary processes},
     journal = {Colloquium Mathematicum},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-75-82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/}
}
TY  - JOUR
AU  - Emmanuel Lesigne
AU  - Dalibor Volný
TI  - Large deviations for generic stationary processes
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 75
EP  - 82
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/
DO  - 10.4064/cm-84/85-1-75-82
LA  - en
ID  - 10_4064_cm_84_85_1_75_82
ER  - 
%0 Journal Article
%A Emmanuel Lesigne
%A Dalibor Volný
%T Large deviations for generic stationary processes
%J Colloquium Mathematicum
%D 2000
%P 75-82
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/
%R 10.4064/cm-84/85-1-75-82
%G en
%F 10_4064_cm_84_85_1_75_82
Emmanuel Lesigne; Dalibor Volný. Large deviations for generic stationary processes. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 75-82. doi : 10.4064/cm-84/85-1-75-82. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-75-82/

Cité par Sources :