Relatively minimal extensions of topological flows
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 51-65
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The concept of relatively minimal (rel. min.) extensions of topological flows is introduced. Several generalizations of properties of minimal extensions are shown. In particular the following extensions are rel. min.: distal point transitive, inverse limits of rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal extension of Y. All proximal and distal factors of a point transitive flow with a dense set of a.p. points are rel. min. In the class of point transitive flows with a dense set of a.p. points, distal open extensions are disjoint from all proximal extensions. An example of a relatively minimal point transitive extension determined by a cocycle which is a coboundary in the measure-theoretic sense is given.
Keywords:
factors, flows, topological dynamics
Affiliations des auteurs :
Mieczysław Mentzen 1
@article{10_4064_cm_84_85_1_51_65,
author = {Mieczys{\l}aw Mentzen},
title = {Relatively minimal extensions of topological flows},
journal = {Colloquium Mathematicum},
pages = {51--65},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2000},
doi = {10.4064/cm-84/85-1-51-65},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-51-65/}
}
TY - JOUR AU - Mieczysław Mentzen TI - Relatively minimal extensions of topological flows JO - Colloquium Mathematicum PY - 2000 SP - 51 EP - 65 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-51-65/ DO - 10.4064/cm-84/85-1-51-65 LA - en ID - 10_4064_cm_84_85_1_51_65 ER -
Mieczysław Mentzen. Relatively minimal extensions of topological flows. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 51-65. doi: 10.4064/cm-84/85-1-51-65
Cité par Sources :