Mixing properties of nearly maximal entropy measures for $ℤ^{d}$ shifts of finite type
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for a certain class of $ℤ^d$ shifts of finite type with positive topological entropy there is always an invariant measure, with entropy arbitrarily close to the topological entropy, that has strong metric mixing properties. With the additional assumption that there are dense periodic orbits, one can ensure that this measure is Bernoulli.
DOI : 10.4064/cm-84/85-1-43-50
Keywords: entropy, ergodic theory, symbolic dynamics, $ℤ^{d$ actions

E. Robinson 1 ; Ayşe Şahin 1

1
@article{10_4064_cm_84_85_1_43_50,
     author = {E. Robinson and Ay\c{s}e \c{S}ahin},
     title = {Mixing properties of nearly maximal entropy measures for $\ensuremath{\mathbb{Z}}^{d}$ shifts of finite type},
     journal = {Colloquium Mathematicum},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-43-50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-43-50/}
}
TY  - JOUR
AU  - E. Robinson
AU  - Ayşe Şahin
TI  - Mixing properties of nearly maximal entropy measures for $ℤ^{d}$ shifts of finite type
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 43
EP  - 50
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-43-50/
DO  - 10.4064/cm-84/85-1-43-50
LA  - en
ID  - 10_4064_cm_84_85_1_43_50
ER  - 
%0 Journal Article
%A E. Robinson
%A Ayşe Şahin
%T Mixing properties of nearly maximal entropy measures for $ℤ^{d}$ shifts of finite type
%J Colloquium Mathematicum
%D 2000
%P 43-50
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-43-50/
%R 10.4064/cm-84/85-1-43-50
%G en
%F 10_4064_cm_84_85_1_43_50
E. Robinson; Ayşe Şahin. Mixing properties of nearly maximal entropy measures for $ℤ^{d}$ shifts of finite type. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 43-50. doi : 10.4064/cm-84/85-1-43-50. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-43-50/

Cité par Sources :