Strong and weak stability of some Markov operators
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 255-263
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^{n}μ-P^{n}ν)$ to $0$ are given.
Keywords:
biomathematics, weak and strong convergence of measures, Markov operators
Affiliations des auteurs :
Ryszard Rudnicki 1
@article{10_4064_cm_84_85_1_255_263,
author = {Ryszard Rudnicki},
title = {Strong and weak stability of some {Markov} operators},
journal = {Colloquium Mathematicum},
pages = {255--263},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2000},
doi = {10.4064/cm-84/85-1-255-263},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/}
}
TY - JOUR AU - Ryszard Rudnicki TI - Strong and weak stability of some Markov operators JO - Colloquium Mathematicum PY - 2000 SP - 255 EP - 263 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/ DO - 10.4064/cm-84/85-1-255-263 LA - en ID - 10_4064_cm_84_85_1_255_263 ER -
Ryszard Rudnicki. Strong and weak stability of some Markov operators. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 255-263. doi: 10.4064/cm-84/85-1-255-263
Cité par Sources :