Strong and weak stability of some Markov operators
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 255-263.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An integral Markov operator $P$ appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let $μ$ and $ν$ be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence $(P^{n}μ-P^{n}ν)$ to $0$ are given.
DOI : 10.4064/cm-84/85-1-255-263
Keywords: biomathematics, weak and strong convergence of measures, Markov operators

Ryszard Rudnicki 1

1
@article{10_4064_cm_84_85_1_255_263,
     author = {Ryszard Rudnicki},
     title = {Strong and weak stability of some {Markov} operators},
     journal = {Colloquium Mathematicum},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-255-263},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/}
}
TY  - JOUR
AU  - Ryszard Rudnicki
TI  - Strong and weak stability of some Markov operators
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 255
EP  - 263
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/
DO  - 10.4064/cm-84/85-1-255-263
LA  - en
ID  - 10_4064_cm_84_85_1_255_263
ER  - 
%0 Journal Article
%A Ryszard Rudnicki
%T Strong and weak stability of some Markov operators
%J Colloquium Mathematicum
%D 2000
%P 255-263
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/
%R 10.4064/cm-84/85-1-255-263
%G en
%F 10_4064_cm_84_85_1_255_263
Ryszard Rudnicki. Strong and weak stability of some Markov operators. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 255-263. doi : 10.4064/cm-84/85-1-255-263. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-255-263/

Cité par Sources :