Ordered K-theoryand minimal symbolic dynamical systems
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 203-227 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.
DOI : 10.4064/cm-84/85-1-203-227

Christian Skau 1

1
@article{10_4064_cm_84_85_1_203_227,
     author = {Christian Skau},
     title = {Ordered {K-theoryand} minimal symbolic dynamical systems},
     journal = {Colloquium Mathematicum},
     pages = {203--227},
     year = {2000},
     volume = {84},
     number = {1},
     doi = {10.4064/cm-84/85-1-203-227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-203-227/}
}
TY  - JOUR
AU  - Christian Skau
TI  - Ordered K-theoryand minimal symbolic dynamical systems
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 203
EP  - 227
VL  - 84
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-203-227/
DO  - 10.4064/cm-84/85-1-203-227
LA  - en
ID  - 10_4064_cm_84_85_1_203_227
ER  - 
%0 Journal Article
%A Christian Skau
%T Ordered K-theoryand minimal symbolic dynamical systems
%J Colloquium Mathematicum
%D 2000
%P 203-227
%V 84
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-203-227/
%R 10.4064/cm-84/85-1-203-227
%G en
%F 10_4064_cm_84_85_1_203_227
Christian Skau. Ordered K-theoryand minimal symbolic dynamical systems. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 203-227. doi: 10.4064/cm-84/85-1-203-227

Cité par Sources :