Ordered K-theoryand minimal symbolic dynamical systems
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 203-227
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Recently a new invariant of K-theoretic nature has emerged which is potentially very useful for the study of symbolic systems. We give an outline of the theory behind this invariant. Then we demonstrate the relevance and power of the invariant, focusing on the families of substitution minimal systems and Toeplitz flows.
@article{10_4064_cm_84_85_1_203_227,
author = {Christian Skau},
title = {Ordered {K-theoryand} minimal symbolic dynamical systems},
journal = {Colloquium Mathematicum},
pages = {203--227},
year = {2000},
volume = {84},
number = {1},
doi = {10.4064/cm-84/85-1-203-227},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-203-227/}
}
TY - JOUR AU - Christian Skau TI - Ordered K-theoryand minimal symbolic dynamical systems JO - Colloquium Mathematicum PY - 2000 SP - 203 EP - 227 VL - 84 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-203-227/ DO - 10.4064/cm-84/85-1-203-227 LA - en ID - 10_4064_cm_84_85_1_203_227 ER -
Christian Skau. Ordered K-theoryand minimal symbolic dynamical systems. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 203-227. doi: 10.4064/cm-84/85-1-203-227
Cité par Sources :