Conjugacies between ergodic transformations and their inverses
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 185-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study certain symmetries that arise when automorphisms S and T defined on a Lebesgue probability space (X, ℱ, μ) satisfy the equation $ST = T^{-1}S $. In an earlier paper [6] it was shown that this puts certain constraints on the spectrum of T. Here we show that it also forces constraints on the spectrum of $S^{2}$. In particular, $S^{2}$ has to have a multiplicity function which only takes even values on the orthogonal complement of the subspace ${ f ∈ L^{2}(X, ℱ, μ): f(T^{2}x) = f(x) }$. For S and T ergodic satisfying this equation further constraints arise, which we illustrate with examples. As an application of these results we give a general method for constructing weakly mixing rank one maps T for which $T^{2}$ has non-simple spectrum.
DOI : 10.4064/cm-84/85-1-185-193

Geoffrey Goodson 1

1
@article{10_4064_cm_84_85_1_185_193,
     author = {Geoffrey Goodson},
     title = {Conjugacies between ergodic transformations and their inverses},
     journal = {Colloquium Mathematicum},
     pages = {185--193},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-185-193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-185-193/}
}
TY  - JOUR
AU  - Geoffrey Goodson
TI  - Conjugacies between ergodic transformations and their inverses
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 185
EP  - 193
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-185-193/
DO  - 10.4064/cm-84/85-1-185-193
LA  - en
ID  - 10_4064_cm_84_85_1_185_193
ER  - 
%0 Journal Article
%A Geoffrey Goodson
%T Conjugacies between ergodic transformations and their inverses
%J Colloquium Mathematicum
%D 2000
%P 185-193
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-185-193/
%R 10.4064/cm-84/85-1-185-193
%G en
%F 10_4064_cm_84_85_1_185_193
Geoffrey Goodson. Conjugacies between ergodic transformations and their inverses. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 185-193. doi : 10.4064/cm-84/85-1-185-193. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-185-193/

Cité par Sources :