Average convergence rate of the first return time
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The convergence rate of the expectation of the logarithm of the first return time $R_{n}$, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have $log[R_{n}(x)P_{n}(x)] =o(n^{β})$ a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have $-(1 + ε)log n ≤ log[R_{n}(x)P_{n}(x)] ≤ loglog n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $ E[log R_{(L,S)} - (L-1)h]$ converges to a constant depending only on the process where $R_{(L,S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
DOI : 10.4064/cm-84/85-1-159-171
Keywords: entropy, the first return time, period of an irreducible matrix, Wyner-Ziv-Ornstein-Weiss theorem, data compression, Markov chain

Geon Choe 1 ; Dong Kim 1

1
@article{10_4064_cm_84_85_1_159_171,
     author = {Geon Choe and Dong Kim},
     title = {Average convergence rate of the first return time},
     journal = {Colloquium Mathematicum},
     pages = {159--171},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-159-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/}
}
TY  - JOUR
AU  - Geon Choe
AU  - Dong Kim
TI  - Average convergence rate of the first return time
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 159
EP  - 171
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/
DO  - 10.4064/cm-84/85-1-159-171
LA  - en
ID  - 10_4064_cm_84_85_1_159_171
ER  - 
%0 Journal Article
%A Geon Choe
%A Dong Kim
%T Average convergence rate of the first return time
%J Colloquium Mathematicum
%D 2000
%P 159-171
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/
%R 10.4064/cm-84/85-1-159-171
%G en
%F 10_4064_cm_84_85_1_159_171
Geon Choe; Dong Kim. Average convergence rate of the first return time. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171. doi: 10.4064/cm-84/85-1-159-171

Cité par Sources :