Average convergence rate of the first return time
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The convergence rate of the expectation of the logarithm of the first return time $R_{n}$, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have $log[R_{n}(x)P_{n}(x)] =o(n^{β})$ a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have $-(1 + ε)log n ≤ log[R_{n}(x)P_{n}(x)] ≤ loglog n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $ E[log R_{(L,S)} - (L-1)h]$ converges to a constant depending only on the process where $R_{(L,S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
Keywords:
entropy, the first return time, period of an irreducible matrix, Wyner-Ziv-Ornstein-Weiss theorem, data compression, Markov chain
Affiliations des auteurs :
Geon Choe 1 ; Dong Kim 1
@article{10_4064_cm_84_85_1_159_171,
author = {Geon Choe and Dong Kim},
title = {Average convergence rate of the first return time},
journal = {Colloquium Mathematicum},
pages = {159--171},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2000},
doi = {10.4064/cm-84/85-1-159-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/}
}
TY - JOUR AU - Geon Choe AU - Dong Kim TI - Average convergence rate of the first return time JO - Colloquium Mathematicum PY - 2000 SP - 159 EP - 171 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/ DO - 10.4064/cm-84/85-1-159-171 LA - en ID - 10_4064_cm_84_85_1_159_171 ER -
Geon Choe; Dong Kim. Average convergence rate of the first return time. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171. doi: 10.4064/cm-84/85-1-159-171
Cité par Sources :