Average convergence rate of the first return time
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The convergence rate of the expectation of the logarithm of the first return time $R_{n}$, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have $log[R_{n}(x)P_{n}(x)] =o(n^{β})$ a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have $-(1 + ε)log n ≤ log[R_{n}(x)P_{n}(x)] ≤ loglog n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $ E[log R_{(L,S)} - (L-1)h]$ converges to a constant depending only on the process where $R_{(L,S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
DOI : 10.4064/cm-84/85-1-159-171
Keywords: entropy, the first return time, period of an irreducible matrix, Wyner-Ziv-Ornstein-Weiss theorem, data compression, Markov chain

Geon Choe 1 ; Dong Kim 1

1
@article{10_4064_cm_84_85_1_159_171,
     author = {Geon Choe and Dong Kim},
     title = {Average convergence rate of the first return time},
     journal = {Colloquium Mathematicum},
     pages = {159--171},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-159-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/}
}
TY  - JOUR
AU  - Geon Choe
AU  - Dong Kim
TI  - Average convergence rate of the first return time
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 159
EP  - 171
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/
DO  - 10.4064/cm-84/85-1-159-171
LA  - en
ID  - 10_4064_cm_84_85_1_159_171
ER  - 
%0 Journal Article
%A Geon Choe
%A Dong Kim
%T Average convergence rate of the first return time
%J Colloquium Mathematicum
%D 2000
%P 159-171
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/
%R 10.4064/cm-84/85-1-159-171
%G en
%F 10_4064_cm_84_85_1_159_171
Geon Choe; Dong Kim. Average convergence rate of the first return time. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171. doi : 10.4064/cm-84/85-1-159-171. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/

Cité par Sources :