Average convergence rate of the first return time
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171
The convergence rate of the expectation of the logarithm of the first return time $R_{n}$, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have $log[R_{n}(x)P_{n}(x)] =o(n^{β})$ a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have $-(1 + ε)log n ≤ log[R_{n}(x)P_{n}(x)] ≤ loglog n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $ E[log R_{(L,S)} - (L-1)h]$ converges to a constant depending only on the process where $R_{(L,S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
Keywords:
entropy, the first return time, period of an irreducible matrix, Wyner-Ziv-Ornstein-Weiss theorem, data compression, Markov chain
@article{10_4064_cm_84_85_1_159_171,
author = {Geon Choe and Dong Kim},
title = {Average convergence rate of the first return time},
journal = {Colloquium Mathematicum},
pages = {159--171},
year = {2000},
volume = {84},
number = {1},
doi = {10.4064/cm-84/85-1-159-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/}
}
TY - JOUR AU - Geon Choe AU - Dong Kim TI - Average convergence rate of the first return time JO - Colloquium Mathematicum PY - 2000 SP - 159 EP - 171 VL - 84 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-159-171/ DO - 10.4064/cm-84/85-1-159-171 LA - en ID - 10_4064_cm_84_85_1_159_171 ER -
Geon Choe; Dong Kim. Average convergence rate of the first return time. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 159-171. doi: 10.4064/cm-84/85-1-159-171
Cité par Sources :