Linear growth of the derivative for measure-preserving diffeomorphisms
Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 147-157.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic $C^{1}$-diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle $C^{1}$-cocycle. We also show that for no positive β ≠ 1 does there exist an ergodic $C^{2}$-diffeomorphism whose derivative has polynomial growth with degree β.
DOI : 10.4064/cm-84/85-1-147-157

Krzysztof Frączek 1

1
@article{10_4064_cm_84_85_1_147_157,
     author = {Krzysztof Fr\k{a}czek},
     title = {Linear growth of the derivative for measure-preserving diffeomorphisms},
     journal = {Colloquium Mathematicum},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-84/85-1-147-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-147-157/}
}
TY  - JOUR
AU  - Krzysztof Frączek
TI  - Linear growth of the derivative for measure-preserving diffeomorphisms
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 147
EP  - 157
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-147-157/
DO  - 10.4064/cm-84/85-1-147-157
LA  - en
ID  - 10_4064_cm_84_85_1_147_157
ER  - 
%0 Journal Article
%A Krzysztof Frączek
%T Linear growth of the derivative for measure-preserving diffeomorphisms
%J Colloquium Mathematicum
%D 2000
%P 147-157
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-147-157/
%R 10.4064/cm-84/85-1-147-157
%G en
%F 10_4064_cm_84_85_1_147_157
Krzysztof Frączek. Linear growth of the derivative for measure-preserving diffeomorphisms. Colloquium Mathematicum, Tome 84 (2000) no. 1, pp. 147-157. doi : 10.4064/cm-84/85-1-147-157. http://geodesic.mathdoc.fr/articles/10.4064/cm-84/85-1-147-157/

Cité par Sources :