On the algebra of constants of polynomial derivations in two variables
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 267-269
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let d be a k-derivation of k[x,y], where k is a field of characteristic zero. Denote by $\widetilde d$ the unique extension of d to k(x,y). We prove that if ker d ≠ k, then ker $\widetilde d$ = (ker d)_0, where (ker d)_0 is the field of fractions of ker d.
@article{10_4064_cm_83_2_267_269,
author = {Janusz Zieli\'nski},
title = {On the algebra of constants of polynomial derivations in two variables},
journal = {Colloquium Mathematicum},
pages = {267--269},
year = {2000},
volume = {83},
number = {2},
doi = {10.4064/cm-83-2-267-269},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-267-269/}
}
TY - JOUR AU - Janusz Zieliński TI - On the algebra of constants of polynomial derivations in two variables JO - Colloquium Mathematicum PY - 2000 SP - 267 EP - 269 VL - 83 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-267-269/ DO - 10.4064/cm-83-2-267-269 LA - en ID - 10_4064_cm_83_2_267_269 ER -
Janusz Zieliński. On the algebra of constants of polynomial derivations in two variables. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 267-269. doi: 10.4064/cm-83-2-267-269
Cité par Sources :