Properties of G-atoms and full Galois covering reduction to stabilizers
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 231-265
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a group G of k-linear automorphisms of a locally bounded k-category R it is proved that the endomorphism algebra $End_R (B)$ of a G-atom B is a local semiprimary ring (Theorem 2.9); consequently, the injective $End_R (B)$-module $(End_R (B))^*$ is indecomposable (Corollary 3.1) and the socle of the tensor product functor $- ⊗_R B^*$ is simple (Theorem 4.4). The problem when the Galois covering reduction to stabilizers with respect to a set U of periodic G-atoms (defined by the functors $Φ^U: \coprod_{B ∈ U} mod kG_B → mod(R/G)$ and $Ψ^U: mod(R/G) → \prod_{B ∈ U} mod kG_B$)is full (resp. strictly full) is studied (see Theorems A, B and 6.3).
Keywords:
Galois covering, tame, locally finite-dimensional module
Affiliations des auteurs :
Piotr Dowbor 1
@article{10_4064_cm_83_2_231_265,
author = {Piotr Dowbor},
title = {Properties of {G-atoms} and full {Galois} covering reduction to stabilizers},
journal = {Colloquium Mathematicum},
pages = {231--265},
year = {2000},
volume = {83},
number = {2},
doi = {10.4064/cm-83-2-231-265},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-231-265/}
}
TY - JOUR AU - Piotr Dowbor TI - Properties of G-atoms and full Galois covering reduction to stabilizers JO - Colloquium Mathematicum PY - 2000 SP - 231 EP - 265 VL - 83 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-231-265/ DO - 10.4064/cm-83-2-231-265 LA - en ID - 10_4064_cm_83_2_231_265 ER -
Piotr Dowbor. Properties of G-atoms and full Galois covering reduction to stabilizers. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 231-265. doi: 10.4064/cm-83-2-231-265
Cité par Sources :