Some remarks on Bochner-Riesz means
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 217-230
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 p ∞, where n is the dimension of the underlying manifold.
Keywords:
unitary representations, Schrödinger operators, Bochner-Riesz means, nilpotent groups, Rockland operators, Heisenberg group, summability
Affiliations des auteurs :
S. Thangavelu 1
@article{10_4064_cm_83_2_217_230,
author = {S. Thangavelu},
title = {Some remarks on {Bochner-Riesz} means},
journal = {Colloquium Mathematicum},
pages = {217--230},
year = {2000},
volume = {83},
number = {2},
doi = {10.4064/cm-83-2-217-230},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-217-230/}
}
S. Thangavelu. Some remarks on Bochner-Riesz means. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 217-230. doi: 10.4064/cm-83-2-217-230
Cité par Sources :