Some remarks on Bochner-Riesz means
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 217-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 p ∞, where n is the dimension of the underlying manifold.
DOI : 10.4064/cm-83-2-217-230
Keywords: unitary representations, Schrödinger operators, Bochner-Riesz means, nilpotent groups, Rockland operators, Heisenberg group, summability

S. Thangavelu 1

1
@article{10_4064_cm_83_2_217_230,
     author = {S. Thangavelu},
     title = {Some remarks on {Bochner-Riesz} means},
     journal = {Colloquium Mathematicum},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-217-230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-217-230/}
}
TY  - JOUR
AU  - S. Thangavelu
TI  - Some remarks on Bochner-Riesz means
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 217
EP  - 230
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-217-230/
DO  - 10.4064/cm-83-2-217-230
LA  - en
ID  - 10_4064_cm_83_2_217_230
ER  - 
%0 Journal Article
%A S. Thangavelu
%T Some remarks on Bochner-Riesz means
%J Colloquium Mathematicum
%D 2000
%P 217-230
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-217-230/
%R 10.4064/cm-83-2-217-230
%G en
%F 10_4064_cm_83_2_217_230
S. Thangavelu. Some remarks on Bochner-Riesz means. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 217-230. doi : 10.4064/cm-83-2-217-230. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-217-230/

Cité par Sources :