A geometric estimate for a periodic Schrödinger operator
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 209-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4{d^2}/{ds^2} + κ^2(s)$ with potential given by the curvature of a closed curve.
DOI : 10.4064/cm-83-2-209-216
Keywords: spectrum, Fenchel inequality, Schrödinger operators, surfaces, Dirac operator

Thomas Friedrich 1

1
@article{10_4064_cm_83_2_209_216,
     author = {Thomas Friedrich},
     title = {A geometric estimate for a periodic {Schr\"odinger} operator},
     journal = {Colloquium Mathematicum},
     pages = {209--216},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-209-216},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/}
}
TY  - JOUR
AU  - Thomas Friedrich
TI  - A geometric estimate for a periodic Schrödinger operator
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 209
EP  - 216
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/
DO  - 10.4064/cm-83-2-209-216
LA  - en
ID  - 10_4064_cm_83_2_209_216
ER  - 
%0 Journal Article
%A Thomas Friedrich
%T A geometric estimate for a periodic Schrödinger operator
%J Colloquium Mathematicum
%D 2000
%P 209-216
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/
%R 10.4064/cm-83-2-209-216
%G en
%F 10_4064_cm_83_2_209_216
Thomas Friedrich. A geometric estimate for a periodic Schrödinger operator. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 209-216. doi : 10.4064/cm-83-2-209-216. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/

Cité par Sources :