A geometric estimate for a periodic Schrödinger operator
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 209-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4{d^2}/{ds^2} + κ^2(s)$ with potential given by the curvature of a closed curve.
Keywords:
spectrum, Fenchel inequality, Schrödinger operators, surfaces, Dirac operator
Affiliations des auteurs :
Thomas Friedrich 1
@article{10_4064_cm_83_2_209_216,
author = {Thomas Friedrich},
title = {A geometric estimate for a periodic {Schr\"odinger} operator},
journal = {Colloquium Mathematicum},
pages = {209--216},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {2000},
doi = {10.4064/cm-83-2-209-216},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/}
}
TY - JOUR AU - Thomas Friedrich TI - A geometric estimate for a periodic Schrödinger operator JO - Colloquium Mathematicum PY - 2000 SP - 209 EP - 216 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-209-216/ DO - 10.4064/cm-83-2-209-216 LA - en ID - 10_4064_cm_83_2_209_216 ER -
Thomas Friedrich. A geometric estimate for a periodic Schrödinger operator. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 209-216. doi: 10.4064/cm-83-2-209-216
Cité par Sources :