Counting partial types in simple theories
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 201-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue the work of Shelah and Casanovas on the cardinality of families of pairwise inconsistent types in simple theories. We prove that, in a simple theory, there are at most $λ^{$ pairwise inconsistent types of size μ over a set of size λ. This bound improves the previous bounds and clarifies the role of κ(T). We also compute exactly the maximal cardinality of such families for countable, simple theories. The main tool is the fact that, in simple theories, the collection of nonforking extensions of fixed size of a given complete type (ordered by reverse inclusion) has a chain condition. We show also that for a notion of dependence, this fact is equivalent to Kim-Pillay's type amalgamation theorem; a theory is simple if and only if it admits a notion of dependence with this chain condition, and furthermore that notion of dependence is forking.
DOI : 10.4064/cm-83-2-201-208

Olivier Lessmann 1

1
@article{10_4064_cm_83_2_201_208,
     author = {Olivier Lessmann},
     title = {Counting partial types in simple theories},
     journal = {Colloquium Mathematicum},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-201-208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-201-208/}
}
TY  - JOUR
AU  - Olivier Lessmann
TI  - Counting partial types in simple theories
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 201
EP  - 208
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-201-208/
DO  - 10.4064/cm-83-2-201-208
LA  - en
ID  - 10_4064_cm_83_2_201_208
ER  - 
%0 Journal Article
%A Olivier Lessmann
%T Counting partial types in simple theories
%J Colloquium Mathematicum
%D 2000
%P 201-208
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-201-208/
%R 10.4064/cm-83-2-201-208
%G en
%F 10_4064_cm_83_2_201_208
Olivier Lessmann. Counting partial types in simple theories. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 201-208. doi : 10.4064/cm-83-2-201-208. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-201-208/

Cité par Sources :