Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 183-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H_1$ be the three-dimensional Heisenberg group. Consider the left invariant differential operators of the form D=P(-iT,-L), where P is a polynomial in two variables with complex coefficients, L is the sublaplacian on $H_1$ and T is the derivative with respect to the central direction. We find a fundamental solution of D, whose definition is related to the way the plane curve defined by P(x,y)=0 intersects the Heisenberg fan F = A ∪ B, A = {(x,y)∈ ℝ^2: y=(2m+1)|x|, m ∈ ℕ, B= {(x,y) ∈ ℝ^2: x=0, y0}. We can write an explicit expression of such a fundamental solution when the curve P(x,y)=0 intersects F at finitely many points, all belonging to A and, if one of them is the origin, the monomial $y^k$ has a nonzero coefficient, where k is the order of zero at the origin. As a consequence, such operators are globally solvable on $H_1$.
DOI : 10.4064/cm-83-2-183-200

Priscilla Gorelli 1

1
@article{10_4064_cm_83_2_183_200,
     author = {Priscilla Gorelli},
     title = {Fundamental solutions for translation and rotation invariant differential operators on the {Heisenberg} group},
     journal = {Colloquium Mathematicum},
     pages = {183--200},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-183-200},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-183-200/}
}
TY  - JOUR
AU  - Priscilla Gorelli
TI  - Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 183
EP  - 200
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-183-200/
DO  - 10.4064/cm-83-2-183-200
LA  - en
ID  - 10_4064_cm_83_2_183_200
ER  - 
%0 Journal Article
%A Priscilla Gorelli
%T Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group
%J Colloquium Mathematicum
%D 2000
%P 183-200
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-183-200/
%R 10.4064/cm-83-2-183-200
%G en
%F 10_4064_cm_83_2_183_200
Priscilla Gorelli. Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 183-200. doi : 10.4064/cm-83-2-183-200. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-183-200/

Cité par Sources :