Interpolation sets for Fréchet measures
Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 161-172.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.
DOI : 10.4064/cm-83-2-161-172

J. Caggiano 1

1
@article{10_4064_cm_83_2_161_172,
     author = {J. Caggiano},
     title = {Interpolation sets for {Fr\'echet} measures},
     journal = {Colloquium Mathematicum},
     pages = {161--172},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2000},
     doi = {10.4064/cm-83-2-161-172},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-161-172/}
}
TY  - JOUR
AU  - J. Caggiano
TI  - Interpolation sets for Fréchet measures
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 161
EP  - 172
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-161-172/
DO  - 10.4064/cm-83-2-161-172
LA  - fr
ID  - 10_4064_cm_83_2_161_172
ER  - 
%0 Journal Article
%A J. Caggiano
%T Interpolation sets for Fréchet measures
%J Colloquium Mathematicum
%D 2000
%P 161-172
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-161-172/
%R 10.4064/cm-83-2-161-172
%G fr
%F 10_4064_cm_83_2_161_172
J. Caggiano. Interpolation sets for Fréchet measures. Colloquium Mathematicum, Tome 83 (2000) no. 2, pp. 161-172. doi : 10.4064/cm-83-2-161-172. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-2-161-172/

Cité par Sources :