On the maximal spectrum of commutative semiprimitive rings
Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The space of maximal ideals is studied on semiprimitive rings and reduced rings, and the relation between topological properties of Max(R) and algebric properties of the ring R are investigated. The socle of semiprimitive rings is characterized homologically, and it is shown that the socle is a direct sum of its localizations with respect to isolated maximal ideals. We observe that the Goldie dimension of a semiprimitive ring R is equal to the Suslin number of Max(R).
DOI : 10.4064/cm-83-1-5-13

K. Samei 1

1
@article{10_4064_cm_83_1_5_13,
     author = {K. Samei},
     title = {On the maximal spectrum of commutative semiprimitive rings},
     journal = {Colloquium Mathematicum},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2000},
     doi = {10.4064/cm-83-1-5-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-5-13/}
}
TY  - JOUR
AU  - K. Samei
TI  - On the maximal spectrum of commutative semiprimitive rings
JO  - Colloquium Mathematicum
PY  - 2000
SP  - 5
EP  - 13
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-5-13/
DO  - 10.4064/cm-83-1-5-13
LA  - en
ID  - 10_4064_cm_83_1_5_13
ER  - 
%0 Journal Article
%A K. Samei
%T On the maximal spectrum of commutative semiprimitive rings
%J Colloquium Mathematicum
%D 2000
%P 5-13
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-5-13/
%R 10.4064/cm-83-1-5-13
%G en
%F 10_4064_cm_83_1_5_13
K. Samei. On the maximal spectrum of commutative semiprimitive rings. Colloquium Mathematicum, Tome 83 (2000) no. 1, pp. 5-13. doi : 10.4064/cm-83-1-5-13. http://geodesic.mathdoc.fr/articles/10.4064/cm-83-1-5-13/

Cité par Sources :